Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8016): 401-411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811727

RESUMO

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Assuntos
Hominidae , Cromossomo X , Cromossomo Y , Animais , Feminino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/classificação , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telômero/genética , Cromossomo X/genética , Cromossomo Y/genética , Evolução Molecular , Variações do Número de Cópias de DNA/genética , Humanos , Espécies em Perigo de Extinção , Padrões de Referência
2.
Genome Res ; 33(6): 872-890, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37442576

RESUMO

Novel genes are essential for evolutionary innovations and differ substantially even between closely related species. Recently, multiple studies across many taxa showed that some novel genes arise de novo, that is, from previously noncoding DNA. To characterize the underlying mutations that allowed de novo gene emergence and their order of occurrence, homologous regions must be detected within noncoding sequences in closely related sister genomes. So far, most studies do not detect noncoding homologs of de novo genes because of incomplete assemblies and annotations, and long evolutionary distances separating genomes. Here, we overcome these issues by searching for de novo expressed open reading frames (neORFs), the not-yet fixed precursors of de novo genes that emerged within a single species. We sequenced and assembled genomes with long-read technology and the corresponding transcriptomes from inbred lines of Drosophila melanogaster, derived from seven geographically diverse populations. We found line-specific neORFs in abundance but few neORFs shared by lines, suggesting a rapid turnover. Gain and loss of transcription is more frequent than the creation of ORFs, for example, by forming new start and stop codons. Consequently, the gain of ORFs becomes rate limiting and is frequently the initial step in neORFs emergence. Furthermore, transposable elements (TEs) are major drivers for intragenomic duplications of neORFs, yet TE insertions are less important for the emergence of neORFs. However, highly mutable genomic regions around TEs provide new features that enable gene birth. In conclusion, neORFs have a high birth-death rate, are rapidly purged, but surviving neORFs spread neutrally through populations and within genomes.


Assuntos
Drosophila melanogaster , Metagenômica , Animais , Drosophila melanogaster/genética , Fases de Leitura Aberta , Elementos de DNA Transponíveis/genética , Evolução Biológica , Evolução Molecular
3.
Nucleic Acids Res ; 52(1): 274-287, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000384

RESUMO

Most of the transcribed eukaryotic genomes are composed of non-coding transcripts. Among these transcripts, some are newly transcribed when compared to outgroups and are referred to as de novo transcripts. De novo transcripts have been shown to play a major role in genomic innovations. However, little is known about the rates at which de novo transcripts are gained and lost in individuals of the same species. Here, we address this gap and estimate the de novo transcript turnover rate with an evolutionary model. We use DNA long reads and RNA short reads from seven geographically remote samples of inbred individuals of Drosophila melanogaster to detect de novo transcripts that are gained on a short evolutionary time scale. Overall, each sampled individual contains around 2500 unspliced de novo transcripts, with most of them being sample specific. We estimate that around 0.15 transcripts are gained per year, and that each gained transcript is lost at a rate around 5× 10-5 per year. This high turnover of transcripts suggests frequent exploration of new genomic sequences within species. These rate estimates are essential to comprehend the process and timescale of de novo gene birth.


Assuntos
Drosophila melanogaster , Evolução Molecular , RNA não Traduzido , Transcrição Gênica , Animais , Humanos , Evolução Biológica , Drosophila melanogaster/genética , Genoma , Genômica , RNA , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Geografia
4.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37011142

RESUMO

New protein coding genes can emerge from genomic regions that previously did not contain any genes, via a process called de novo gene emergence. To synthesize a protein, DNA must be transcribed as well as translated. Both processes need certain DNA sequence features. Stable transcription requires promoters and a polyadenylation signal, while translation requires at least an open reading frame. We develop mathematical models based on mutation probabilities, and the assumption of neutral evolution, to find out how quickly genes emerge and are lost. We also investigate the effect of the order by which DNA features evolve, and if sequence composition is biased by mutation rate. We rationalize how genes are lost much more rapidly than they emerge, and how they preferentially arise in regions that are already transcribed. Our study not only answers some fundamental questions on the topic of de novo emergence but also provides a modeling framework for future studies.


Assuntos
Evolução Molecular , Genômica , Mutação , Fases de Leitura Aberta , Genoma
5.
PLoS Genet ; 17(9): e1009787, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478447

RESUMO

Comparative genomics has enabled the identification of genes that potentially evolved de novo from non-coding sequences. Many such genes are expressed in male reproductive tissues, but their functions remain poorly understood. To address this, we conducted a functional genetic screen of over 40 putative de novo genes with testis-enriched expression in Drosophila melanogaster and identified one gene, atlas, required for male fertility. Detailed genetic and cytological analyses showed that atlas is required for proper chromatin condensation during the final stages of spermatogenesis. Atlas protein is expressed in spermatid nuclei and facilitates the transition from histone- to protamine-based chromatin packaging. Complementary evolutionary analyses revealed the complex evolutionary history of atlas. The protein-coding portion of the gene likely arose at the base of the Drosophila genus on the X chromosome but was unlikely to be essential, as it was then lost in several independent lineages. Within the last ~15 million years, however, the gene moved to an autosome, where it fused with a conserved non-coding RNA and evolved a non-redundant role in male fertility. Altogether, this study provides insight into the integration of novel genes into biological processes, the links between genomic innovation and functional evolution, and the genetic control of a fundamental developmental process, gametogenesis.


Assuntos
Cromatina/metabolismo , Drosophila melanogaster/genética , Evolução Molecular , Espermátides/metabolismo , Animais , Núcleo Celular/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fertilidade/genética , Masculino , Interferência de RNA , Espermatogênese/genética
6.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34668533

RESUMO

The evolution of an obligate parasitic lifestyle often leads to the reduction of morphological and physiological traits, which may be accompanied by loss of genes and functions. Slave-making ants are social parasites that exploit the work force of closely related ant species for social behaviors such as brood care and foraging. Recent divergence between these social parasites and their hosts enables comparative studies of gene family evolution. We sequenced the genomes of eight ant species, representing three independent origins of ant slavery. During the evolution of eusociality, chemoreceptor genes multiplied due to the importance of chemical communication in insect societies. We investigated the evolutionary fate of these chemoreceptors and found that slave-making ant genomes harbored only half as many gustatory receptors as their hosts', potentially mirroring the outsourcing of foraging tasks to host workers. In addition, parasites had fewer odorant receptors and their loss shows striking patterns of convergence across independent origins of parasitism, in particular in orthologs often implicated in sociality like the 9-exon odorant receptors. These convergent losses represent a rare case of convergent molecular evolution at the level of individual genes. Thus, evolution can operate in a way that is both repeatable and reversible when independent ant lineages lose important social traits during the transition to a parasitic lifestyle.


Assuntos
Formigas , Receptores Odorantes , Animais , Formigas/genética , Comportamento Animal/fisiologia , Evolução Molecular , Receptores Odorantes/genética , Comportamento Social
7.
Mol Ecol ; 32(2): 369-380, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320186

RESUMO

Transposable elements (TEs) are mobile genetic sequences, which can cause the accumulation of genomic damage in the lifetime of an organism. The regulation of TEs, for instance via the piRNA-pathway, is an important mechanism to protect the integrity of genomes, especially in the germ-line where mutations can be transmitted to offspring. In eusocial insects, soma and germ-line are divided among worker and reproductive castes, so one may expect caste-specific differences in TE regulation to exist. To test this, we compared whole-genome levels of repeat element transcription in the fat body of female workers, kings and five different queen stages of the higher termite, Macrotermes natalensis. In this species, queens can live over 20 years, maintaining near maximum reproductive output, while sterile workers only live weeks. We found a strong, positive correlation between TE expression and the expression of neighbouring genes in all castes. However, we found substantially higher TE activity in workers than in reproductives. Furthermore, TE expression did not increase with age in queens, despite a sevenfold increase in overall gene expression, due to a significant upregulation of the piRNA-pathway in 20-year-old queens. Our results suggest a caste- and age-specific regulation of the piRNA-pathway has evolved in higher termites that is analogous to germ-line-specific activity in solitary organisms. In the fat body of these termite queens, an important metabolic tissue for maintaining their extreme longevity and reproductive output, an efficient regulation of TEs likely protects genome integrity, thus further promoting reproductive fitness even at high age.


Assuntos
Isópteros , Animais , Feminino , Isópteros/genética , Insetos , Fertilidade , Reprodução/genética , Longevidade
8.
J Mol Evol ; 90(6): 418-428, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36181519

RESUMO

Vertebrate blood coagulation is controlled by a cascade containing more than 20 proteins. The cascade proteins are found in the blood in their zymogen forms and when the cascade is triggered by tissue damage, zymogens are activated and in turn activate their downstream proteins by serine protease activity. In this study, we examined proteomes of 21 chordates, of which 18 are vertebrates, to reveal the modular evolution of the blood coagulation cascade. Additionally, two Arthropoda species were used to compare domain arrangements of the proteins belonging to the hemolymph clotting and the blood coagulation cascades. Within the vertebrate coagulation protein set, almost half of the studied proteins are shared with jawless vertebrates. Domain similarity analyses revealed that there are multiple possible evolutionary trajectories for each coagulation protein. During the evolution of higher vertebrate clades, gene and genome duplications led to the formation of other coagulation cascade proteins.


Assuntos
Fatores de Coagulação Sanguínea , Cordados , Animais , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Vertebrados/genética , Coagulação Sanguínea/genética , Cordados/genética , Genoma
9.
Mol Ecol ; 31(19): 4991-5004, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35920076

RESUMO

The ecological success of social Hymenoptera (ants, bees, wasps) depends on the division of labour between the queen and workers. Each caste exhibits highly specialized morphology, behaviour, and life-history traits, such as lifespan and fecundity. Despite strong defences against alien intruders, insect societies are vulnerable to social parasites, such as workerless inquilines or slave-making ants. Here, we investigate whether gene expression varies in parallel ways between lifestyles (slave-making versus host ants) across five independent origins of ant slavery in the "Formicoxenus-group" of the ant tribe Crematogastrini. As caste differences are often less pronounced in slave-making ants than in nonparasitic ants, we also compare caste-specific gene expression patterns between lifestyles. We demonstrate a substantial overlap in expression differences between queens and workers across taxa, irrespective of lifestyle. Caste affects the transcriptomes much more profoundly than lifestyle, as indicated by 37 times more genes being linked to caste than to lifestyle and by multiple caste-associated modules of coexpressed genes with strong connectivity. However, several genes and one gene module are linked to slave-making across the independent origins of this parasitic lifestyle, pointing to some evolutionary convergence. Finally, we do not find evidence for an interaction between caste and lifestyle, indicating that caste differences in gene expression remain consistent even when species switch to a parasitic lifestyle. Our findings strongly support the existence of a core set of genes whose expression is linked to the queen and worker caste in this ant taxon, as proposed by the "genetic toolkit" hypothesis.


Assuntos
Formigas , Características de História de Vida , Animais , Formigas/genética , Abelhas/genética , Comportamento Animal , Evolução Biológica , Transcriptoma/genética
10.
Nat Chem Biol ; 16(8): 930, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32533134

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nature ; 530(7590): 331-5, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26814964

RESUMO

Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma de Planta/genética , Água do Mar , Zosteraceae/genética , Aclimatação/genética , Parede Celular/química , Etilenos/biossíntese , Duplicação Gênica , Genes de Plantas/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Oceanos e Mares , Osmorregulação/genética , Filogenia , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Pólen/metabolismo , Salinidade , Tolerância ao Sal/genética , Alga Marinha/genética , Terpenos/metabolismo
12.
Glob Chang Biol ; 27(1): 94-107, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33067869

RESUMO

Global climate change can influence organismic interactions like those between hosts and parasites. Rising temperatures may exacerbate the exploitation of hosts by parasites, especially in ectothermic systems. The metabolic activity of ectotherms is strongly linked to temperature and generally increases when temperatures rise. We hypothesized that temperature change in combination with parasite infection interferes with the host's immunometabolism. We used a parasite, the avian cestode Schistocephalus solidus, which taps most of its resources from the metabolism of an ectothermic intermediate host, the three-spined stickleback. We experimentally exposed sticklebacks to this parasite, and studied liver transcriptomes 50 days after infection at 13°C and 24°C, to assess their immunometabolic responses. Furthermore, we monitored fitness parameters of the parasite and examined immunity and body condition of the sticklebacks at 13°C, 18°C and 24°C after 36, 50 and 64 days of infection. At low temperatures (13°C), S. solidus growth was constrained, presumably also by the more active stickleback's immune system, thus delaying its infectivity for the final host to 64 days. Warmer temperature (18°C and 24°C) enhanced S. solidus growth, and it became infective to the final host already after 36 days. Overall, S. solidus produced many more viable offspring after development at elevated temperatures. In contrast, stickleback hosts had lower body conditions, and their immune system was less active at warm temperature. The stickleback's liver transcriptome revealed that mainly metabolic processes were differentially regulated between temperatures, whereas immune genes were not strongly affected. Temperature effects on gene expression were strongly enhanced in infected sticklebacks, and even in exposed-but-not-infected hosts. These data suggest that the parasite exposure in concert with rising temperature, as to be expected with global climate change, shifted the host's immunometabolism, thus providing nutrients for the enormous growth of the parasite and, at the same time suppressing immune defence.


Assuntos
Infecções por Cestoides , Doenças dos Peixes , Parasitos , Smegmamorpha , Animais , Mudança Climática , Interações Hospedeiro-Parasita , Temperatura
13.
Nat Chem Biol ; 15(11): 1120-1128, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636435

RESUMO

Characterizing the adaptive landscapes that encompass the emergence of novel enzyme functions can provide molecular insights into both enzymatic and evolutionary mechanisms. Here, we combine ancestral protein reconstruction with biochemical, structural and mutational analyses to characterize the functional evolution of methyl-parathion hydrolase (MPH), an organophosphate-degrading enzyme. We identify five mutations that are necessary and sufficient for the evolution of MPH from an ancestral dihydrocoumarin hydrolase. In-depth analyses of the adaptive landscapes encompassing this evolutionary transition revealed that the mutations form a complex interaction network, defined in part by higher-order epistasis, that constrained the adaptive pathways available. By also characterizing the adaptive landscapes in terms of their functional activities towards three additional organophosphate substrates, we reveal that subtle differences in the polarity of the substrate substituents drastically alter the network of epistatic interactions. Our work suggests that the mutations function collectively to enable substrate recognition via subtle structural repositioning.


Assuntos
Epistasia Genética , Hidrolases/metabolismo , Metil Paration/metabolismo , Xenobióticos/metabolismo
14.
RNA Biol ; 18(sup1): 409-415, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34313541

RESUMO

lncRNAs are at the core of many regulatory processes and have also been recognized to be involved in various complex diseases. They affect gene regulation through direct interactions with RNA, DNA or proteins. Accordingly, lncRNA structure is likely to be essential for their regulatory function. Point mutations, which manifest as SNPs (single nucleotide polymorphisms) in genome screens, can substantially alter their function and, subsequently, the expression of their downstream regulated genes. To test the effect of SNPs on structure, we investigated lncRNAs associated with dilated cardiomyopathy. Among 322 human candidate lncRNAs, we demonstrate first the significant association of an SNP located in lncRNA H19 using data from 1084 diseased and 751 control patients. H19 is generally highly expressed in the heart, with a complex expression pattern during heart development. Next, we used MFE (minimum free energy) folding to demonstrate a significant refolding in the secondary structure of this 861 nt long lncRNA. Since MFE folding may overlook the importance of sub-optimal structures, we showed that this refolding also manifests in the overall Boltzmann structure ensemble. There, the composition of structures is tremendously affected in their thermodynamic probabilities through the genetic variant. Finally, we confirmed these results experimentally, using SHAPE-Seq, corroborating that SNPs affecting such structures may explain hidden genetic variance not accounted for through genome wide association studies. Our results suggest that structural changes in lncRNAs, and lncRNA H19 in particular, affect regulatory processes and represent optimal targets for further in-depth studies probing their molecular interactions.


Assuntos
Cardiomiopatia Dilatada/patologia , Predisposição Genética para Doença , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Pareamento de Bases , Sequência de Bases , Cardiomiopatia Dilatada/genética , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Nucleic Acids Res ; 47(W1): W507-W510, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31076763

RESUMO

Even in the era of next generation sequencing, in which bioinformatics tools abound, annotating transcriptomes and proteomes remains a challenge. This can have major implications for the reliability of studies based on these datasets. Therefore, quality assessment represents a crucial step prior to downstream analyses on novel transcriptomes and proteomes. DOGMA allows such a quality assessment to be carried out. The data of interest are evaluated based on a comparison with a core set of conserved protein domains and domain arrangements. Depending on the studied species, DOGMA offers precomputed core sets for different phylogenetic clades. We now developed a web server for the DOGMA software, offering a user-friendly, simple to use interface. Additionally, the server provides a graphical representation of the analysis results and their placement in comparison to publicly available data. The server is freely available under https://domainworld-services.uni-muenster.de/dogma/. Additionally, for large scale analyses the software can be downloaded free of charge from https://domainworld.uni-muenster.de.


Assuntos
Domínios Proteicos , Proteoma , Software , Transcriptoma , Genoma , Internet , Anotação de Sequência Molecular
17.
BMC Evol Biol ; 20(1): 30, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059645

RESUMO

BACKGROUND: Modularity is important for evolutionary innovation. The recombination of existing units to form larger complexes with new functionalities spares the need to create novel elements from scratch. In proteins, this principle can be observed at the level of protein domains, functional subunits which are regularly rearranged to acquire new functions. RESULTS: In this study we analyse the mechanisms leading to new domain arrangements in five major eukaryotic clades (vertebrates, insects, fungi, monocots and eudicots) at unprecedented depth and breadth. This allows, for the first time, to directly compare rates of rearrangements between different clades and identify both lineage specific and general patterns of evolution in the context of domain rearrangements. We analyse arrangement changes along phylogenetic trees by reconstructing ancestral domain content in combination with feasible single step events, such as fusion or fission. Using this approach we explain up to 70% of all rearrangements by tracing them back to their precursors. We find that rates in general and the ratio between these rates for a given clade in particular, are highly consistent across all clades. In agreement with previous studies, fusions are the most frequent event leading to new domain arrangements. A lineage specific pattern in fungi reveals exceptionally high loss rates compared to other clades, supporting recent studies highlighting the importance of loss for evolutionary innovation. Furthermore, our methodology allows us to link domain emergences at specific nodes in the phylogenetic tree to important functional developments, such as the origin of hair in mammals. CONCLUSIONS: Our results demonstrate that domain rearrangements are based on a canonical set of mutational events with rates which lie within a relatively narrow and consistent range. In addition, gained knowledge about these rates provides a basis for advanced domain-based methodologies for phylogenetics and homology analysis which complement current sequence-based methods.


Assuntos
Eucariotos , Evolução Molecular , Estrutura Terciária de Proteína/genética , Proteínas/química , Proteínas/genética , Animais , Abelhas/fisiologia , Resistência à Doença/genética , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/metabolismo , Fungos/classificação , Fungos/genética , Ontologia Genética , Mutação/fisiologia , Filogenia , Doenças das Plantas/microbiologia , Comportamento Social , Vertebrados/classificação , Vertebrados/genética , Vertebrados/metabolismo
18.
J Mol Evol ; 88(4): 382-398, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32253450

RESUMO

Orphan genes, lacking detectable homologs in outgroup species, typically represent 10-30% of eukaryotic genomes. Efforts to find the source of these young genes indicate that de novo emergence from non-coding DNA may in part explain their prevalence. Here, we investigate the roots of orphan gene emergence in the Drosophila genus. Across the annotated proteomes of twelve species, we find 6297 orphan genes within 4953 taxon-specific clusters of orthologs. By inferring the ancestral DNA as non-coding for between 550 and 2467 (8.7-39.2%) of these genes, we describe for the first time how de novo emergence contributes to the abundance of clade-specific Drosophila genes. In support of them having functional roles, we show that de novo genes have robust expression and translational support. However, the distinct nucleotide sequences of de novo genes, which have characteristics intermediate between intergenic regions and conserved genes, reflect their recent birth from non-coding DNA. We find that de novo genes encode more disordered proteins than both older genes and intergenic regions. Together, our results suggest that gene emergence from non-coding DNA provides an abundant source of material for the evolution of new proteins. Following gene birth, gradual evolution over large evolutionary timescales moulds sequence properties towards those of conserved genes, resulting in a continuum of properties whose starting points depend on the nucleotide sequences of an initial pool of novel genes.


Assuntos
Proteínas de Drosophila , Drosophila , Evolução Molecular , Animais , Drosophila/classificação , Drosophila/genética , Proteínas de Drosophila/genética , Genes de Insetos , Filogenia
19.
Heredity (Edinb) ; 125(1-2): 50-59, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499660

RESUMO

Eukaryotic genomes frequently acquire new protein-coding genes which may significantly impact an organism's fitness. Novel genes can be created, for example, by duplication of large genomic regions or de novo, from previously non-coding DNA. Either way, creation of a novel transcript is an essential early step during novel gene emergence. Most studies on the gain-and-loss dynamics of novel genes so far have compared genomes between species, constraining analyses to genes that have remained fixed over long time scales. However, the importance of novel genes for rapid adaptation among populations has recently been shown. Therefore, since little is known about the evolutionary dynamics of transcripts across natural populations, we here study transcriptomes from several tissues and nine geographically distinct populations of an ecological model species, the three-spined stickleback. Our findings suggest that novel genes typically start out as transcripts with low expression and high tissue specificity. Early expression regulation appears to be mediated by gene-body methylation. Although most new and narrowly expressed genes are rapidly lost, those that survive and subsequently spread through populations tend to gain broader and higher expression levels. The properties of the encoded proteins, such as disorder and aggregation propensity, hardly change. Correspondingly, young novel genes are not preferentially under positive selection but older novel genes more often overlap with FST outlier regions. Taken together, expression of the surviving novel genes is rapidly regulated, probably via epigenetic mechanisms, while structural properties of encoded proteins are non-debilitating and might only change much later.


Assuntos
Evolução Molecular , Smegmamorpha , Animais , Genética Populacional , Genoma , Genômica , Metilação , Smegmamorpha/genética
20.
Nature ; 510(7505): 356-62, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24919147

RESUMO

Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Assuntos
Eucalyptus/genética , Genoma de Planta , Eucalyptus/classificação , Evolução Molecular , Variação Genética , Endogamia , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa