Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 34(1): 40-54, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288904

RESUMO

BACKGROUND: Differentiating among HCO 3- , CO 3= , and H + movements across membranes has long seemed impossible. We now seek to discriminate unambiguously among three alternate mechanisms: the inward flux of 2 HCO 3- (mechanism 1), the inward flux of 1 CO 3= (mechanism 2), and the CO 2 /HCO 3- -stimulated outward flux of 2 H + (mechanism 3). METHODS: As a test case, we use electrophysiology and heterologous expression in Xenopus oocytes to examine SLC4 family members that appear to transport "bicarbonate" ("HCO 3- "). RESULTS: First, we note that cell-surface carbonic anhydrase should catalyze the forward reaction CO 2 +OH - →HCO 3- if HCO 3- is the substrate; if it is not, the reverse reaction should occur. Monitoring changes in cell-surface pH ( Δ pH S ) with or without cell-surface carbonic anhydrase, we find that the presumed Cl-"HCO 3 " exchanger AE1 (SLC4A1) does indeed transport HCO 3- (mechanism 1) as long supposed, whereas the electrogenic Na/"HCO 3 " cotransporter NBCe1 (SLC4A4) and the electroneutral Na + -driven Cl-"HCO 3 " exchanger NDCBE (SLC4A8) do not. Second, we use mathematical simulations to show that each of the three mechanisms generates unique quantities of H + at the cell surface (measured as Δ pH S ) per charge transported (measured as change in membrane current, ΔIm ). Calibrating ΔpH S /Δ Im in oocytes expressing the H + channel H V 1, we find that our NBCe1 data align closely with predictions of CO 3= transport (mechanism 2), while ruling out HCO 3- (mechanism 1) and CO 2 /HCO 3- -stimulated H + transport (mechanism 3). CONCLUSIONS: Our surface chemistry approach makes it possible for the first time to distinguish among HCO 3- , CO 3= , and H + fluxes, thereby providing insight into molecular actions of clinically relevant acid-base transporters and carbonic-anhydrase inhibitors.


Assuntos
Bicarbonatos , Anidrases Carbônicas , Bicarbonatos/metabolismo , Anidrases Carbônicas/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Concentração de Íons de Hidrogênio
2.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835660

RESUMO

Carbonic anhydrases (CAs), because they catalyze the interconversion of carbon dioxide (CO2) and water into bicarbonate (HCO3-) and protons (H+), thereby influencing pH, are near the core of virtually all physiological processes in the body. In the kidneys, soluble and membrane-associated CAs and their synergy with acid-base transporters play important roles in urinary acid secretion, the largest component of which is the reabsorption of HCO3- in specific nephron segments. Among these transporters are the Na+-coupled HCO3- transporters (NCBTs) and the Cl--HCO3- exchangers (AEs)-members of the "solute-linked carrier" 4 (SLC4) family. All of these transporters have traditionally been regarded as "HCO3-" transporters. However, recently our group has demonstrated that two of the NCBTs carry CO32- rather than HCO3- and has hypothesized that all NCBTs follow suit. In this review, we examine current knowledge on the role of CAs and "HCO3-" transporters of the SLC4 family in renal acid-base physiology and discuss how our recent findings impact renal acid secretion, including HCO3- reabsorption. Traditionally, investigators have associated CAs with producing or consuming solutes (CO2, HCO3-, and H+) and thus ensuring their efficient transport across cell membranes. In the case of CO32- transport by NCBTs, however, we hypothesize that the role of membrane-associated CAs is not the appreciable production or consumption of substrates but the minimization of pH changes in nanodomains near the membrane.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Dióxido de Carbono/metabolismo , Rim/metabolismo , Bicarbonatos/metabolismo , Transporte Biológico , Prótons , Proteínas de Membrana Transportadoras/metabolismo , Concentração de Íons de Hidrogênio
3.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L333-L347, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986321

RESUMO

Several aspects of the cell biology of cystic fibrosis (CF) epithelial cells are altered including impaired lipid regulation, disrupted intracellular transport, and impaired microtubule regulation. It is unclear how the loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to these differences. It is hypothesized that the loss of CFTR function leads to altered regulation of carbonic anhydrase (CA) activity resulting in cellular phenotypic changes. In this study, it is demonstrated that CA2 protein expression is reduced in CF model cells, primary mouse nasal epithelial (MNE) cells, excised MNE tissue, and primary human nasal epithelial cells (P < 0.05). This corresponds to a decrease in CA2 RNA expression measured by qPCR as well as an overall reduction in CA activity in primary CF MNEs. The addition of CFTR-inhibitor-172 to WT MNE cells for ≥24 h mimics the significantly lower protein expression of CA2 in CF cells. Treatment of CF cells with l-phenylalanine (L-Phe), an activator of CA activity, restores endosomal transport through an effect on microtubule regulation in a manner dependent on soluble adenylate cyclase (sAC). This effect can be blocked with the CA2-selective inhibitor dorzolamide. These data suggest that the loss of CFTR function leads to the decreased expression of CA2 resulting in the downstream cell signaling alterations observed in CF.


Assuntos
Anidrases Carbônicas , Fibrose Cística , Adenilil Ciclases/metabolismo , Animais , Anidrases Carbônicas/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Camundongos , Fenótipo
4.
Adv Exp Med Biol ; 1395: 65-68, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527615

RESUMO

Perinatal hypoxia leads to changes in cerebral angiogenesis and persistent structural and functional changes in the adult brain. It may also result in greater vulnerability to subsequent challenges. We investigated the effect of postnatal day 2 (P2) hypoxic preconditioning on adult brain capillary density and brain vascular endothelial growth factor (VEGF) expression in mice. P2 mice were exposed to hypoxia (5% O2) in a normobaric chamber for 2 h then returned to normoxia while their littermates remained in normoxia (P2 control). After 2-6 months, they were euthanised and their brains were removed for capillary density determination. Another set of animals (P2 hypoxic mice and P2 controls) were euthanised at 2, 10, 23, and 60 days after birth and brain VEGF expression was assessed by western blot. Adult brain capillary density was significantly increased in the P2 hypoxic mice when compared to the P2 control mice. Additionally, VEGF expression appeared to be elevated in the P2-hypoxia mice when compared to the P2-control mice at all time points, and VEGF levels in P2-hypoxia mice declined with age similarly to P2-control mice. These data demonstrate that transient early-postnatal hypoxic stress leads to an increase in capillary density that persists in the adult, possibly due to increased VEGF expression. These results might be explained by epigenetic factors in the VEGF gene.


Assuntos
Hipóxia Encefálica , Fator A de Crescimento do Endotélio Vascular , Gravidez , Feminino , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hipóxia , Fatores de Crescimento do Endotélio Vascular/metabolismo , Capilares/metabolismo , Encéfalo/metabolismo
5.
J Physiol ; 598(24): 5821-5856, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32969493

RESUMO

KEY POINTS: According to the HCO3- metabolon hypothesis, direct association of cytosolic carbonic anhydrases (CAs) with the electrogenic Na/HCO3 cotransporter NBCe1-A speeds transport by regenerating/consuming HCO3- . The present work addresses published discrepancies as to whether cytosolic CAs stimulate NBCe1-A, heterologously expressed in Xenopus oocytes. We confirm the essential elements of the previous experimental observations, taken as support for the HCO3- metabolon hypothesis. However, using our own experimental protocols or those of others, we find that NBCe1-A function is unaffected by cytosolic CAs. Previous conclusions that cytosolic CAs do stimulate NBCe1-A can be explained by an unanticipated stimulatory effect of the CAs on an endogenous Na-H exchanger. Theoretical analyses show that, although CAs could stimulate non- HCO3- transporters (e.g. Na-H exchangers) by accelerating CO2 / HCO3- -mediated buffering of acid-base equivalents, they could not appreciably affect transport rates of NBCe1 or other transporters carrying HCO3- , CO3= , or NaCO3- ion pairs. ABSTRACT: The HCO3- metabolon hypothesis predicts that cytosolic carbonic anhydrase (CA) binds to NBCe1-A, promotes HCO3- replenishment/consumption, and enhances transport. Using a short step-duration current-voltage (I-V) protocol with Xenopus oocytes expressing eGFP-tagged NBCe1-A, our group reported that neither injecting human CA II (hCA II) nor fusing hCA II to the NBCe1-A carboxy terminus affects background-subtracted NBCe1 slope conductance (GNBC ), which is a direct measure of NBCe1-A activity. Others - using bovine CA (bCA), untagged NBCe1-A, and protocols keeping holding potential (Vh ) far from NBCe1-A's reversal potential (Erev ) for prolonged periods - found that bCA increases total membrane current (ΔIm ), which apparently supports the metabolon hypothesis. We systematically investigated differences in the two protocols. In oocytes expressing untagged NBCe1-A, injected with bCA and clamped to -40 mV, CO2 / HCO3- exposures markedly decrease Erev , producing large transient outward currents persisting for >10 min and rapid increases in [Na+ ]i . Although the CA inhibitor ethoxzolamide (EZA) reduces both ΔIm and d[Na+ ]i /dt, it does not reduce GNBC . In oocytes not expressing NBCe1-A, CO2 / HCO3- triggers rapid increases in [Na+ ]i that both hCA II and bCA enhance in concentration-dependent manners. These d[Na+ ]i /dt increases are inhibited by EZA and blocked by EIPA, a Na-H exchanger (NHE) inhibitor. In oocytes expressing untagged NBCe1-A and injected with bCA, EIPA abolishes the EZA-dependent decreases in ΔIm and d[Na+ ]i /dt. Thus, CAs/EZA produce their ΔIm and d[Na+ ]i /dt effects not through NBCe1-A, but endogenous NHEs. Theoretical considerations argue against a CA stimulation of HCO3- transport, supporting the conclusion that an NBCe1-A- HCO3- metabolon does not exist in oocytes.


Assuntos
Anidrases Carbônicas , Simportadores , Animais , Bicarbonatos/metabolismo , Anidrases Carbônicas/metabolismo , Bovinos , Humanos , Concentração de Íons de Hidrogênio , Oócitos/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Trocadores de Sódio-Hidrogênio , Xenopus laevis/metabolismo
6.
J Physiol ; 598(16): 3395-3415, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32359081

RESUMO

KEY POINTS: The roles of the Na+ /HCO3- cotransporters NBCn1 and NBCn2 as well as their activators IRBIT and L-IRBIT in the regulation of the mTAL transport of NH4+ , HCO3- , and NaCl are investigated. Dietary challenges of NH4 Cl, NaHCO3 or NaCl all increase the abundance of NBCn1 and NBCn2 in the outer medulla. The three challenges generally produce parallel increases in the abundance of IRBIT and L-IRBIT in the outer medulla. Both IRBIT and L-IRBIT powerfully stimulate the activities of the mTAL isoforms of NBCn1 and NBCn2 as expressed in Xenopus oocytes. Our findings support the hypothesis that NBCn1, NBCn2, IRBIT and L-IRBIT appropriately promote NH4+ shunting but oppose HCO3- and NaCl reabsorption in the mTAL, and thus are at the nexus of the regulation pathways for multiple renal transport processes. ABSTRACT: The medullary thick ascending limb (mTAL) plays a key role in urinary acid and NaCl excretion. NBCn1 and NBCn2 are present in the basolateral mTAL, where NBCn1 promotes NH4+ shunting. IRBIT and L-IRBIT (the IRBITs) are two powerful activators of certain acid-base transporters. Here we use western blotting and immunofluorescence to examine the effects of multiple acid-base and electrolyte disturbances on expression of NBCn1, NBCn2 and the IRBITs in rat kidney. We also use electrophysiology to examine the functional effects of IRBITs on NBCn1 and NBCn2 in Xenopus oocytes. NH4 Cl-induced metabolic acidosis (MAc) substantially increases protein expression of NBCn1 and NBCn2 in the outer medulla (OM) of rat kidney. Surprisingly, NaHCO3 -induced metabolic alkalosis (MAlk) and high-salt diet (HSD) also increase expression of NBCn1 and NBCn2 (effect of NaHCO3  > HSD). Moreover, all three challenges generally increase OM expression of the IRBITs. In Xenopus oocytes, the IRBITs substantially increase the activities of NBCn1 and NBCn2. We propose that upregulation of basolateral NBCn1 and NBCn2 plus the IRBITs in the mTAL: (1) promotes NH4+ shunting by increasing basolateral HCO3- uptake to neutralize apical NH4+ uptake during MAc; (2) inhibits HCO3- reabsorption during MAlk by opposing HCO3- efflux via the basolateral anion exchanger AE2; and (3) inhibits NaCl reabsorption by mediating (with AE2) net NaCl backflux into the mTAL cell during HSD. Thus, NBCn1, NBCn2 and the IRBITs are at the nexus of the regulatory pathways for multiple renal transport processes.


Assuntos
Acidose , Alça do Néfron , Animais , Bicarbonatos/metabolismo , Alça do Néfron/metabolismo , Ratos , Sódio , Simportadores de Sódio-Bicarbonato/genética
7.
Physiol Rev ; 93(2): 803-959, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23589833

RESUMO

The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Acidose Tubular Renal/genética , Acidose Tubular Renal/metabolismo , Animais , Evolução Biológica , Antiportadores de Cloreto-Bicarbonato/genética , Humanos , Dados de Sequência Molecular , Bicarbonato de Sódio/metabolismo
8.
Plant Cell ; 28(2): 568-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764375

RESUMO

Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3 (-) enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the ßCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of ßCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of ßCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, ßCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dióxido de Carbono/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Ácido Abscísico/metabolismo , Ânions/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Proteínas de Membrana/genética , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Proteínas Quinases/genética
9.
Int J Mol Sci ; 20(15)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390837

RESUMO

Carbonic anhydrases (CAs) catalyze a reaction fundamental for life: the bidirectional conversion of carbon dioxide (CO2) and water (H2O) into bicarbonate (HCO3-) and protons (H+). These enzymes impact numerous physiological processes that occur within and across the many compartments in the body. Within compartments, CAs promote rapid H+ buffering and thus the stability of pH-sensitive processes. Between compartments, CAs promote movements of H+, CO2, HCO3-, and related species. This traffic is central to respiration, digestion, and whole-body/cellular pH regulation. Here, we focus on the role of mathematical modeling in understanding how CA enhances buffering as well as gradients that drive fluxes of CO2 and other solutes (facilitated diffusion). We also examine urinary acid secretion and the carriage of CO2 by the respiratory system. We propose that the broad physiological impact of CAs stem from three fundamental actions: promoting H+ buffering, enhancing H+ exchange between buffer systems, and facilitating diffusion. Mathematical modeling can be a powerful tool for: (1) clarifying the complex interdependencies among reaction, diffusion, and protein-mediated components of physiological processes; (2) formulating hypotheses and making predictions to be tested in wet-lab experiments; and (3) inferring data that are impossible to measure.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Modelos Teóricos , Animais , Soluções Tampão , Dióxido de Carbono/química , Difusão , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Concentração de Íons de Hidrogênio , Membranas Artificiais , Redes e Vias Metabólicas , Modelos Biológicos , Fenômenos Fisiológicos Respiratórios
10.
J Physiol ; 596(16): 3637-3653, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29808931

RESUMO

KEY POINTS: Slc4a4 (mouse) encodes at least five variants of the electrogenic sodium/bicarbonate transporter NBCe1. The initial 41 cytosolic amino acids of NBCe1-A and -D are unique; NBCe1-A has high activity. The initial 85 amino acids of NBCe1-B, -C and -E are unique; NBCe1-B and -C have low activity. Previous work showed that deleting residues 1-85 or 40-62 of NBCe1-B, or 1-87 of NBCe1-C, eliminates autoinhibition. These regions also include binding determinants for IRBIT (inositol trisphosphate (IP3 )-receptor binding protein released with IP3 ), which relieves autoinhibition. Here, systematically replacing/deleting residues 28-62, we find that only the nine amino acid cationic cluster (residues 40-48) of NBCe1-B is essential for autoinhibition. IRBIT stimulates all but one low-activity construct. We suggest that electrostatic interactions - which IRBIT presumably interrupts - between the cationic cluster and the membrane or other domains of NBCe1 play a central role in tempering the activity of NBCe1-B in the pancreas, brain and other organs. ABSTRACT: Variant B of the electrogenic Na+ /HCO3- cotransporter (NBCe1-B) contributes to the vectorial transport of HCO3- in epithelia (e.g. pancreatic ducts) and to the maintenance of intracellular pH in the central nervous systems (e.g. astrocytes). NBCe1-B has very low basal activity due to an autoinhibitory domain (AID) located, at least in part, in the unique portion (residues 1-85) of the cytosolic NH2 -terminus. Previous work has shown that removing 23 amino acids (residues 40-62) stimulates NBCe1-B. Here, we test the hypothesis that a cationic cluster of nine consecutive positively charged amino acids (residues 40-48) is a necessary part of the AID. Using two-electrode voltage clamping of Xenopus oocytes, we assess the activity of human NBCe1-B constructs in which we systematically replace or delete residues 28-62, which includes the cationic cluster. We find that replacing or deleting all residues within the cationic cluster markedly increases NBCe1-B activity (i.e. eliminates autoinhibition). On the background of a cationic clusterless construct, systematically restoring Arg residues restores autoinhibition in two distinct quanta, with one to three Arg residues restoring ∼50%, and four or more Arg residues restoring virtually all autoinhibition. Systematically deleting residues before the cluster reduces autoinhibition by, at most, a small amount. Replacing or deleting residues after the cluster has no effect. For constructs with low NBCe1 activity (but good surface expression, as assessed by biotinylation), co-expression with super-IRBIT (lacking PP1-binding site) restores full activity (i.e. relieves autoinhibition). In summary, the cationic cluster is a necessary component of the AID of NBCe1-B.


Assuntos
Motivos de Aminoácidos , Bicarbonatos/metabolismo , Cloretos/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Citoplasma/metabolismo , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Domínios Proteicos , Homologia de Sequência , Simportadores de Sódio-Bicarbonato/antagonistas & inibidores , Simportadores de Sódio-Bicarbonato/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G868-G878, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118317

RESUMO

Gastrointestinal dysfunction in cystic fibrosis (CF) is a prominent source of pain among patients with CF. Linaclotide, a guanylate cyclase C (GCC) receptor agonist, is a US Food and Drug Administration-approved drug prescribed for chronic constipation but has not been widely used in CF, as the cystic fibrosis transmembrane conductance regulator (CFTR) is the main mechanism of action. However, anecdotal clinical evidence suggests that linaclotide may be effective for treating some gastrointestinal symptoms in CF. The goal of this study was to determine the effectiveness and mechanism of linaclotide in treating CF gastrointestinal disorders using CF mouse models. Intestinal transit, chloride secretion, and intestinal lumen fluidity were assessed in wild-type and CF mouse models in response to linaclotide. CFTR and sodium/hydrogen exchanger 3 (NHE3) response to linaclotide was also evaluated. Linaclotide treatment improved intestinal transit in mice carrying either F508del or null Cftr mutations but did not induce detectable Cl- secretion. Linaclotide increased fluid retention and fluidity of CF intestinal contents, suggesting inhibition of fluid absorption. Targeted inhibition of sodium absorption by the NHE3 inhibitor tenapanor produced improvements in gastrointestinal transit similar to those produced by linaclotide treatment, suggesting that inhibition of fluid absorption by linaclotide contributes to improved gastrointestinal transit in CF. Our results demonstrate that linaclotide improves gastrointestinal transit in CF mouse models by increasing luminal fluidity through inhibiting NHE3-mediated sodium absorption. Further studies are necessary to assess whether linaclotide could improve CF intestinal pathologies in patients. GCC signaling and NHE3 inhibition may be therapeutic targets for CF intestinal manifestations. NEW & NOTEWORTHY Linaclotide's primary mechanism of action in alleviating chronic constipation is through cystic fibrosis transmembrane conductance regulator (CFTR), negating its use in patients with cystic fibrosis (CF). For the first time, our findings suggest that in the absence of CFTR, linaclotide can improve fluidity of the intestinal lumen through the inhibition of sodium/hydrogen exchanger 3. These findings suggest that linaclotide could improve CF intestinal pathologies in patients.


Assuntos
Fibrose Cística/tratamento farmacológico , Trânsito Gastrointestinal , Intestinos/efeitos dos fármacos , Peptídeos/farmacologia , Trocador 3 de Sódio-Hidrogênio/metabolismo , Animais , Células CACO-2 , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/uso terapêutico
12.
J Am Soc Nephrol ; 28(8): 2409-2419, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28280139

RESUMO

The kidney maintains systemic acid-base balance by reclaiming from the renal tubule lumen virtually all HCO3- filtered in glomeruli and by secreting additional H+ to titrate luminal buffers. For proximal tubules, which are responsible for about 80% of this activity, it is believed that HCO3- reclamation depends solely on H+ secretion, mediated by the apical Na+/H+ exchanger NHE3 and the vacuolar proton pump. However, NHE3 and the proton pump cannot account for all HCO3- reclamation. Here, we investigated the potential contribution of two variants of the electroneutral Na+/HCO3- cotransporter NBCn2, the amino termini of which start with the amino acids MCDL (MCDL-NBCn2) and MEIK (MEIK-NBCn2). Western blot analysis and immunocytochemistry revealed that MEIK-NBCn2 predominantly localizes at the basolateral membrane of medullary thick ascending limbs in the rat kidney, whereas MCDL-NBCn2 localizes at the apical membrane of proximal tubules. Notably, NH4Cl-induced systemic metabolic acidosis or hypokalemic alkalosis downregulated the abundance of MCDL-NBCn2 and reciprocally upregulated NHE3 Conversely, NaHCO3-induced metabolic alkalosis upregulated MCDL-NBCn2 and reciprocally downregulated NHE3 We propose that the apical membrane of the proximal tubules has two distinct strategies for HCO3- reclamation: the conventional indirect pathway, in which NHE3 and the proton pump secrete H+ to titrate luminal HCO3-, and the novel direct pathway, in which NBCn2 removes HCO3- from the lumen. The reciprocal regulation of NBCn2 and NHE3 under different physiologic conditions is consistent with our mathematical simulations, which suggest that HCO3- uptake and H+ secretion have reciprocal efficiencies for HCO3- reclamation versus titration of luminal buffers.


Assuntos
Bicarbonatos/metabolismo , Membrana Celular/metabolismo , Túbulos Renais Proximais/metabolismo , Simportadores de Sódio-Bicarbonato/fisiologia , Animais , Transporte de Íons , Túbulos Renais Proximais/ultraestrutura , Ratos , Ratos Sprague-Dawley
13.
J Physiol ; 595(1): 93-124, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27353306

RESUMO

KEY POINTS: A polymorphism of human AE3 is associated with idiopathic generalized epilepsy. Knockout of AE3 in mice lowers the threshold for triggering epileptic seizures. The explanations for these effects are elusive. Comparisons of cells from wild-type vs. AE3-/- mice show that AE3 (present in hippocampal neurons, not astrocytes; mediates HCO3- efflux) enhances intracellular pH (pHi ) recovery (decrease) from alkali loads in neurons and, surprisingly, adjacent astrocytes. During metabolic acidosis (MAc), AE3 speeds initial acidification, but limits the extent of pHi decrease in neurons and astrocytes. AE3 speeds re-alkalization after removal of MAc in neurons and astrocytes, and speeds neuronal pHi recovery from an ammonium prepulse-induced acid load. We propose that neuronal AE3 indirectly increases acid extrusion in (a) neurons via Cl- loading, and (b) astrocytes by somehow enhancing NBCe1 (major acid extruder). The latter would enhance depolarization-induced alkalinization of astrocytes, and extracellular acidification, and thereby reduce susceptibility to epileptic seizures. ABSTRACT: The anion exchanger AE3, expressed in hippocampal (HC) neurons but not astrocytes, contributes to intracellular pH (pHi ) regulation by facilitating the exchange of extracellular Cl- for intracellular HCO3- . The human AE3 polymorphism A867D is associated with idiopathic generalized epilepsy. Moreover, AE3 knockout (AE3-/- ) mice are more susceptible to epileptic seizure. The mechanism of these effects has been unclear because the starting pHi in AE3-/- and wild-type neurons is indistinguishable. The purpose of the present study was to use AE3-/- mice to investigate the role of AE3 in pHi homeostasis in HC neurons, co-cultured with astrocytes. We find that the presence of AE3 increases the acidification rate constant during pHi recovery from intracellular alkaline loads imposed by reducing [CO2 ]. The presence of AE3 also speeds intracellular acidification during the early phase of metabolic acidosis (MAc), not just in neurons but, surprisingly, in adjacent astrocytes. Additionally, AE3 contributes to braking the decrease in pHi later during MAc in both neurons and astrocytes. Paradoxically, AE3 enhances intracellular re-alkalization after MAc removal in neurons and astrocytes, and pHi recovery from an ammonium prepulse-induced acid load in neurons. The effects of AE3 knockout on astrocytic pHi homeostasis in MAc-related assays require the presence of neurons, and are consistent with the hypothesis that the AE3 knockout reduces functional expression of astrocytic NBCe1. These findings suggest a new type of neuron-astrocyte communication, based on the expression of AE3 in neurons, which could explain how AE3 reduces seizure susceptibility.


Assuntos
Antiporters/fisiologia , Astrócitos/fisiologia , Neurônios/fisiologia , Animais , Antiporters/genética , Células Cultivadas , Técnicas de Cocultura , Hipocampo/citologia , Homeostase , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
J Am Soc Nephrol ; 27(9): 2616-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26839367

RESUMO

Regulation of blood pH-critical for virtually every facet of life-requires that the renal proximal tubule (PT) adjust its rate of H(+) secretion (nearly the same as the rate of HCO3 (-) reabsorption, JHCO3 ) in response to changes in blood [CO2] and [HCO3 (-)]. Yet CO2/HCO3 (-) sensing mechanisms remain poorly characterized. Because receptor tyrosine kinase inhibitors render JHCO3 in the PT insensitive to changes in CO2 concentration, we hypothesized that the structural features of receptor protein tyrosine phosphatase-γ (RPTPγ) that are consistent with binding of extracellular CO2 or HCO3 (-) facilitate monitoring of blood CO2/HCO3 (-) concentrations. We now report that PTs express RPTPγ on blood-facing membranes. Moreover, RPTPγ deletion in mice eliminated the CO2 and HCO3 (-) sensitivities of JHCO3 as well as the normal defense of blood pH during whole-body acidosis. Thus, RPTPγ appears to be a novel extracellular CO2/HCO3 (-) sensor critical for pH homeostasis.


Assuntos
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Líquido Extracelular/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/fisiologia , Animais , Túbulos Renais Proximais/metabolismo , Camundongos
15.
Plant Physiol ; 169(2): 1168-78, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26243620

RESUMO

Elevated carbon dioxide (CO2) in leaves closes stomatal apertures. Research has shown key functions of the ß-carbonic anhydrases (ßCA1 and ßCA4) in rapid CO2-induced stomatal movements by catalytic transmission of the CO2 signal in guard cells. However, the underlying mechanisms remain unclear, because initial studies indicate that these Arabidopsis (Arabidopsis thaliana) ßCAs are targeted to distinct intracellular compartments upon expression in tobacco (Nicotiana benthamiana) cells. Which cellular location of these enzymes plays a key role in native guard cells in CO2-regulated stomatal movements remains unknown. Here, we express fluorescently tagged CAs in guard cells of ca1ca4 double-mutant plants and show that the specific locations of ßCA4 at the plasma membrane and ßCA1 in native guard cell chloroplasts each can mediate rapid CO2 control of stomatal movements. Localization and complementation analyses using a mammalian αCAII-yellow fluorescent protein in guard cells further show that cytoplasmic localization is also sufficient to restore CO2 regulation of stomatal conductance. Mathematical modeling of cellular CO2 catalysis suggests that the dynamics of the intracellular HCO3 (-) concentration change in guard cells can be driven by plasma membrane and cytoplasmic localizations of CAs but not as clearly by chloroplast targeting. Moreover, modeling supports the notion that the intracellular HCO3 (-) concentration dynamics in guard cells are a key mechanism in mediating CO2-regulated stomatal movements but that an additional chloroplast role of CAs exists that has yet to be identified.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/metabolismo , Estômatos de Plantas/fisiologia , Sequência de Aminoácidos , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/genética , Membrana Celular/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Células Vegetais/metabolismo , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo
16.
Am J Physiol Cell Physiol ; 307(9): C791-813, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965587

RESUMO

The α-carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the interconversion of CO2 and HCO3 (-). Here, we focus on human CA II (CA II), a ubiquitous cytoplasmic enzyme. In the second paper in this series, we examine CA IV at the extracellular surface. After microinjecting recombinant CA II in a Tris solution (or just Tris) into oocytes, we expose oocytes to 1.5% CO2/10 mM HCO3 (-)/pH 7.50 while using microelectrodes to monitor intracellular pH (pHi) and surface pH (pHS). CO2 influx causes the familiar sustained pHi fall as well as a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA II increases the magnitudes of the maximal rate of pHi change, (dpHi/dt)max, and the maximal change in pHS, ΔpHS. Preincubating oocytes with the inhibitor ethoxzolamide eliminates the effects of CA II. Compared with pHS, pHi begins to change only after a delay of ~9 s and its relaxation has a larger (i.e., slower) time constant (τpHi > τpHS ). Simultaneous measurements with two pHi electrodes, one superficial and one deep, suggest that impalement depth contributes to pHi delay and higher τpHi . Using higher CO2/HCO3 (-) levels, i.e., 5%/33 mM HCO3 (-) or 10%/66 mM HCO3 (-), increases (dpHi/dt)max and ΔpHS, though not in proportion to the increase in [CO2]. A reaction-diffusion mathematical model (described in the third paper in this series) accounts for the above general features and supports the conclusion that cytosolic CA-consuming entering CO2 or replenishing exiting CO2-increases CO2 fluxes across the cell membrane.


Assuntos
Dióxido de Carbono/metabolismo , Anidrase Carbônica II/metabolismo , Membrana Celular/metabolismo , Animais , Bicarbonatos/metabolismo , Transporte Biológico , Anidrase Carbônica II/antagonistas & inibidores , Humanos , Concentração de Íons de Hidrogênio , Oócitos/metabolismo , Xenopus laevis
17.
Am J Physiol Cell Physiol ; 307(9): C841-58, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965589

RESUMO

Exposing an oocyte to CO2/HCO3 (-) causes intracellular pH (pHi) to decline and extracellular-surface pH (pHS) to rise to a peak and decay. The two companion papers showed that oocytes injected with cytosolic carbonic anhydrase II (CA II) or expressing surface CA IV exhibit increased maximal rate of pHi change (dpHi/dt)max, increased maximal pHS changes (ΔpHS), and decreased time constants for pHi decline and pHS decay. Here we investigate these results using refinements of an earlier mathematical model of CO2 influx into a spherical cell. Refinements include 1) reduced cytosolic water content, 2) reduced cytosolic diffusion constants, 3) refined CA II activity, 4) layer of intracellular vesicles, 5) reduced membrane CO2 permeability, 6) microvilli, 7) refined CA IV activity, 8) a vitelline membrane, and 9) a new simulation protocol for delivering and removing the bulk extracellular CO2/HCO3 (-) solution. We show how these features affect the simulated pHi and pHS transients and use the refined model with the experimental data for 1.5% CO2/10 mM HCO3 (-) (pHo = 7.5) to find parameter values that approximate ΔpHS, the time to peak pHS, the time delay to the start of the pHi change, (dpHi/dt)max, and the change in steady-state pHi. We validate the revised model against data collected as we vary levels of CO2/HCO3 (-) or of extracellular HEPES buffer. The model confirms the hypothesis that CA II and CA IV enhance transmembrane CO2 fluxes by maximizing CO2 gradients across the plasma membrane, and it predicts that the pH effects of simultaneously implementing intracellular and extracellular-surface CA are supra-additive.


Assuntos
Dióxido de Carbono/metabolismo , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IV/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Animais , Bicarbonatos/metabolismo , Transporte Biológico , Humanos , Concentração de Íons de Hidrogênio , Oócitos/metabolismo , Membrana Vitelina/metabolismo , Xenopus laevis
18.
Am J Physiol Cell Physiol ; 307(9): C814-40, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24965590

RESUMO

Human carbonic anhydrase IV (CA IV) is GPI-anchored to the outer membrane surface, catalyzing CO2/HCO3 (-) hydration-dehydration. We examined effects of heterologously expressed CA IV on intracellular-pH (pHi) and surface-pH (pHS) transients caused by exposing oocytes to CO2/HCO3 (-)/pH 7.50. CO2 influx causes a sustained pHi fall and a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA IV increases magnitudes of maximal rate of pHi change (dpHi/dt)max, and maximal pHS change (ΔpHS) and decreases time constants for pHi changes (τpHi ) and pHS relaxations (τpHS ). Decreases in time constants indicate that CA IV enhances CO2 fluxes. Extracellular acetazolamide blocks all CA IV effects, but not those of injected CA II. Injected acetazolamide partially reduces CA IV effects. Thus, extracellular CA is required for, and the equivalent of cytosol-accessible CA augments, the effects of CA IV. Increasing the concentration of the extracellular non-CO2/HCO3 (-) buffer (i.e., HEPES), in the presence of extracellular CA or at high [CO2], accelerates CO2 influx. Simultaneous measurements with two pHS electrodes, one on the oocyte meridian perpendicular to the axis of flow and one downstream from the direction of extracellular-solution flow, reveal that the downstream electrode has a larger (i.e., slower) τpHS , indicating [CO2] asymmetry over the oocyte surface. A reaction-diffusion mathematical model (third paper in series) accounts for the above general features, and supports the conclusion that extracellular CA, which replenishes entering CO2 or consumes exiting CO2 at the extracellular surface, enhances the gradient driving CO2 influx across the cell membrane.


Assuntos
Dióxido de Carbono/metabolismo , Anidrase Carbônica IV/metabolismo , Membrana Celular/metabolismo , Acetazolamida/farmacologia , Animais , Bicarbonatos/metabolismo , Transporte Biológico , Soluções Tampão , Anidrase Carbônica IV/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , HEPES , Humanos , Concentração de Íons de Hidrogênio , Oócitos/metabolismo , Xenopus laevis
19.
J Biol Chem ; 288(12): 8146-8155, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23382378

RESUMO

Activation of Na(+),HCO3(-) cotransport in vascular smooth muscle cells (VSMCs) contributes to intracellular pH (pH(i)) control during artery contraction, but the signaling pathways involved have been unknown. We investigated whether physical and functional interactions between the Na(+),HCO3(-) cotransporter NBCn1 (slc4a7) and the Ca(2+)/calmodulin-activated serine/threonine phosphatase calcineurin exist and play a role for pHi control in VSMCs. Using a yeast two-hybrid screen, we found that splice cassette II from the N terminus of NBCn1 interacts with calcineurin Aß. When cassette II was truncated or mutated to disrupt the putative calcineurin binding motif PTVVIH, the interaction was abolished. Native NBCn1 and calcineurin Aß co-immunoprecipitated from A7r5 rat VSMCs. A peptide (acetyl-DDIPTVVIH-amide), which mimics the putative calcineurin binding motif, inhibited the co-immunoprecipitation whereas a mutated peptide (acetyl-DDIATAVAA-amide) did not. Na(+),HCO3(-) cotransport activity was investigated in VSMCs of mesenteric arteries after an NH4(+) prepulse. During depolarization with 50 mM extracellular K(+) to raise intracellular [Ca(2+)], Na(+),HCO3(-) cotransport activity was inhibited 20-30% by calcineurin inhibitors (FK506 and cyclosporine A). FK506 did not affect Na(+),HCO3(-) cotransport activity in VSMCs when cytosolic [Ca(2+)] was lowered by buffering, nor did it disrupt binding between NBCn1 and calcineurin Aß. FK506 augmented the intracellular acidification of VSMCs during norepinephrine-induced artery contractions. No physical or functional interactions between calcineurin Aß and the Na(+)/H(+) exchanger NHE1 were observed in VSMCs. In conclusion, we demonstrate a physical interaction between calcineurin Aß and cassette II of NBCn1. Intracellular Ca(2+) activates Na(+),HCO3(-) cotransport activity in VSMCs in a calcineurin-dependent manner which is important for protection against intracellular acidification.


Assuntos
Calcineurina/metabolismo , Artérias Mesentéricas/fisiologia , Contração Muscular , Simportadores de Sódio-Bicarbonato/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Sequência de Aminoácidos , Animais , Transporte Biológico , Inibidores de Calcineurina , Sinalização do Cálcio , Sequência Consenso , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/metabolismo , Dados de Sequência Molecular , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Norepinefrina/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Tacrolimo/farmacologia , Técnicas do Sistema de Duplo-Híbrido
20.
Am J Physiol Regul Integr Comp Physiol ; 307(12): R1413-27, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25209413

RESUMO

Metabolic acidosis (MAc), a decrease in extracellular pH (pHo) caused by a decrease in [HCO3 (-)]o at a fixed [CO2]o, is a common clinical condition and causes intracellular pH (pHi) to fall. Although previous work has suggested that MAc-induced decreases in pHi (ΔpHi) differ among cell types, what is not clear is the extent to which these differences are the result of the wide variety of methodologies employed by various investigators. In the present study, we evaluated the effects of two sequential MAc challenges (MAc1 and MAc2) on pHi in 10 cell types/lines: primary-cultured hippocampal (HCN) neurons and astrocytes (HCA), primary-cultured medullary raphé (MRN) neurons, and astrocytes (MRA), CT26 colon cancer, the C2C12 skeletal muscles, primary-cultured bone marrow-derived macrophages (BMDM) and dendritic cells (BMDC), Ink4a/ARF-null melanocytes, and XB-2 keratinocytes. We monitor pHi using ratiometric fluorescence imaging of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein while imposing MAc: lowering (pHo) from 7.4 to 7.2 by decreasing [HCO3 (-)]o from 22 to 14 mM at 5% CO2 for 7 min. After MAc1, we return cells to the control solution for 10 min and impose MAc2. Using our definition of MAc resistance [(ΔpHi/ΔpHo) ≤ 40%], during MAc1, ∼70% of CT26 and ∼50% of C2C12 are MAc-resistant, whereas the other cell types are predominantly MAc-sensitive. During MAc2, some cells adapt [(ΔpHi/ΔpHo)2 < (ΔpHi/ΔpHo)1], particularly HCA, C2C12, and BMDC. Most maintain consistent responses [(ΔpHi/ΔpHo)2 ≅ (ΔpHi/ΔpHo)1], and a few decompensate [(ΔpHi/ΔpHo)2>(ΔpHi/ΔpHo)1], particularly HCN, C2C12, and XB-2. Thus, responses to twin MAc challenges depend both on the individual cell and cell type.


Assuntos
Acidose/metabolismo , Líquido Intracelular/metabolismo , Adaptação Fisiológica , Animais , Astrócitos/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Células Dendríticas/metabolismo , Concentração de Íons de Hidrogênio , Queratinócitos/metabolismo , Macrófagos/metabolismo , Melanócitos/metabolismo , Camundongos , Microscopia de Fluorescência , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Fenótipo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa