RESUMO
BACKGROUND: Alfalfa (Medicago sativa L.) is the most cultivated forage legume around the world. Under a variety of growing conditions, forage yield in alfalfa is stymied by biotic and abiotic stresses including heat, salt, drought, and disease. Given the sessile nature of plants, they use strategies including, but not limited to, differential gene expression to respond to environmental cues. Transcription factors control the expression of genes that contribute to or enable tolerance and survival during periods of stress. Basic-leucine zipper (bZIP) transcription factors have been demonstrated to play a critical role in regulating plant growth and development as well as mediate the responses to abiotic stress in several species, including Arabidopsis thaliana, Oryza sativa, Lotus japonicus and Medicago truncatula. However, there is little information about bZIP transcription factors in cultivated alfalfa. RESULT: In the present study, 237 bZIP genes were identified in alfalfa from publicly available sequencing data. Multiple sequence alignments showed the presence of intact bZIP motifs in the identified sequences. Based on previous phylogenetic analyses in A. thaliana, alfalfa bZIPs were similarly divided and fell into 10 groups. The physico-chemical properties, motif analysis and phylogenetic study of the alfalfa bZIPs revealed high specificity within groups. The differential expression of alfalfa bZIPs in a suite of tissues indicates that bZIP genes are specifically expressed at different developmental stages in alfalfa. Similarly, expression analysis in response to ABA, cold, drought and salt stresses, indicates that a subset of bZIP genes are also differentially expressed and likely play a role in abiotic stress signaling and/or tolerance. RT-qPCR analysis on selected genes further verified these differential expression patterns. CONCLUSIONS: Taken together, this work provides a framework for the future study of bZIPs in alfalfa and presents candidate bZIPs involved in stress-response signaling.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Medicago sativa , Filogenia , Estresse Fisiológico , Medicago sativa/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simulação por Computador , Perfilação da Expressão Gênica , Biologia Computacional/métodosRESUMO
Glyphosate is a popular, systemic, broad-spectrum herbicide used in modern agriculture. Being a structural analog of phosphoenolpyruvate (PEP), it inhibits 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) which is responsible for the biosynthesis of aromatic amino acids and various aromatic secondary metabolites. Taking a lead from glyphosate-resistant weeds, two mutant variants of the rice EPSPS gene were developed by amino acid substitution (T173I + P177S; TIPS-OsEPSPS and G172A + T173I + P177S; GATIPS-OsEPSPS). These mutated EPSPS genes were overexpressed in rice under the control of either native EPSPS or constitutive promoters (maize ubiquitin [ZmUbi] promoter). The overexpression of TIPS-OsEPSPS under the control of the ZmUbi promoter resulted in higher tolerance to glyphosate (up to threefold of the recommended dose) without affecting the fitness and related agronomic traits of plants in both controlled and field conditions. Furthermore, such rice lines produced 17%-19% more grains compared to the wild type (WT) in the absence of glyphosate application and the phenylalanine and tryptophan contents in the transgenic seeds were found to be significantly higher in comparison with WT seeds. Our results also revealed that the native promoter guided expression of modified EPSPS genes did not significantly improve the glyphosate tolerance. The present study describing the introduction of a crop-specific TIPS mutation in class I aroA gene of rice and its overexpression have potential to substantially improve the yield and field level glyphosate tolerance in rice. This is the first report to observe that the EPSPS has role to play in improving grain yield of rice.
Assuntos
Herbicidas , Oryza , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Glicina/análogos & derivados , Glicina/farmacologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Oryza/genética , Fosfatos , GlifosatoRESUMO
Among the diverse array of heat shock proteins across the three domains of life, mitochondria-targeted small heat shock proteins (sHSPs) are evolved in the plant lineage. However, they remained mysterious and understudied. In this study, we reported a systematic study of a novel mitochondria-targeted nuclear sHSP from eggplant (Solanum melongena L.; SmsHSP24.1). Differential expression of SmsHSP24.1 indicated its positive role exerted during stress conditions. Escherichia coli-BL21 cell line overexpressing the SmsHSP24.1 showed excellent thermo-tolerance ability, tolerating up to 52°C. Spectrometry and electron microscopy revealed a multimeric structure of the protein which acted as a molecular chaperone at high temperatures. Overexpression of SmsHSP24.1 significantly enhanced resistance against heat, drought, and salt stresses and showed rapid germination in constitutively overexpressed eggplant lines. RNA-seq analysis reveals an apparent upregulation of a set of reactive oxygen species (ROS) scavenging enzymes of the glutathione (GHS) pathway and mitochondrial electron transport chain (ETC). Significant upregulation was also observed in auxin biosynthesis and cell-wall remodeling transcripts in overexpressed lines. qPCR, biochemical and physiological analysis further aligned with the finding of transcriptome analysis and suggested an essential role of SmsHSP24.1 under various stress responses and positive physiological influence on the growth of eggplants. Therefore, this gene has immense potential in engineering stress-resilient crop plants.
RESUMO
Fertilizers and herbicides are two major components in the agriculture system for achieving crop productivity. Massive use of orthophosphate fertilizers and herbicides poses threats to phosphate reserves and aids the evolution of herbicide tolerant weed biotypes. Phosphite (Phi), a phosphate analog, has been proposed as more beneficial than traditionally used phosphate fertilizers and herbicides in the agriculture. We developed phoA overexpressing transgenic rice that minimizes the phosphate loss and contributes to weed management in the agriculture. The phoA rice lines showed improved root, shoot length and total biomass production under phosphite conditions. Additionally, the complete phenotype and productivity of phoA lines under the phosphite treatment attained was similar to that of plants under phosphate sufficient condition. The Phi metabolizing properties of the phoA overexpressed lines improved under the Phi application and phi treatment enabled controlling of weeds without compromising the yield of transgenic rice plants. Our results indicated that phoA alone or in combination with other Phi metabolizing gene(s) can possibly be used as an effective ameliorating system for improving crop plants for phi-based fertilization and weed management strategy in the agriculture.
RESUMO
Weeds and their devastating effects have been a great threat since the start of agriculture. They compete with crop plants in the field and negatively influence the crop yield quality and quantity along with survival of the plants. Glyphosate is an important broad-spectrum systemic herbicide which has been widely used to combat various weed problems since last two decades. It is very effective even at low concentrations, and possesses low environmental toxicity and soil residual activity. However, the residual concentration of glyphosate inside the plant has been of major concern as it severely affects the important metabolic pathways, and results in poor plant growth and grain yield. In this study, we compared the glyphosate tolerance efficiency of two different transgenic groups over expressing proline/173/serine (P173S) rice EPSPS glyphosate tolerant mutant gene (OsmEPSPS) alone and in combination with the glyphosate detoxifying encoding igrA gene, recently characterized from Pseudomonas. The molecular analysis of all transgenic plant lines showed a stable integration of transgenes and their active expression in foliar tissues. The physiological analysis of glyphosate treated transgenic lines at seed germination and vegetative stages showed a significant difference in glyphosate tolerance between the two transgenic groups. The transgenic plants with OsmEPSPS and igrA genes, representing dual glyphosate tolerance mechanisms, showed an improved root-shoot growth, physiology, overall phenotype and higher level of glyphosate tolerance compared to the OsmEPSPS transgenic plants. This study highlights the advantage of igrA led detoxification mechanism as a crucial component of glyphosate tolerance strategy in combination with glyphosate tolerant OsmEPSPS gene, which offered a better option to tackle in vivo glyphosate accumulation and imparted more robust glyphosate tolerance in rice transgenic plants.
RESUMO
Herbicides are important constituents of modern integrated weed management system. However, the continuous use of a single herbicide leads to the frequent evolution of resistant weeds which further challenges their management. To overcome this situation, alternating use of multiple herbicides along with conventional weed-management practices is suitable and recommended. The development of multiple herbicide-tolerant crops is still in its infancy, and only a few crops with herbicide tolerance traits have been reported and commercialized. In this study, we developed transgenic rice plants that were tolerant to both bensulfuron methyl (BM) and glufosinate herbicides. The herbicide tolerant mutant variant of rice AHAS (Acetohydroxyacid synthase) was overexpressed along with codon optimized bacterial bar gene. The developed transgenic lines showed significant tolerance to both herbicides at various stages of plant development. The selected transgenic lines displayed an increased tolerance against 100 µM BM and 30 mg/L phosphinothricin during seed germination stage. Foliar applications further confirmed the dual tolerance to 300 µM BM and 2% basta herbicides without any significant growth and yield penalties. The development of dual-herbicide-tolerant transgenic plants adds further information to the knowledge of crop herbicide tolerance for sustainable weed management in modern agricultural system.
Assuntos
Aminobutiratos/farmacologia , Herbicidas/farmacologia , Oryza , Plantas Geneticamente Modificadas , Compostos de Sulfonilureia/farmacologia , Controle de Plantas Daninhas , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimentoRESUMO
Glutamine synthetase (GS) is a key enzyme involved in the nitrogen metabolism of higher plants. Abiotic stresses have adverse effects on crop production and pose a serious threat to global food security. GS activity and expression is known to be significantly modulated by various abiotic stresses. However, very few transgenic overexpression studies of GS have studied its impact on abiotic stress tolerance. GS is also the target enzyme of the broad spectrum herbicide Glufosinate (active ingredient: phosphinothricin). In this study, we investigated the effect of concurrent overexpression of the rice cytosolic GS1 (OsGS1;1) and chloroplastic GS2 (OsGS2) genes in transgenic rice on its tolerance to abiotic stresses and the herbicide Glufosinate. Our results demonstrate that the co-overexpression of OsGS1;1 and OsGS2 isoforms in transgenic rice plants enhanced its tolerance to osmotic and salinity stress at the seedling stage. The transgenic lines maintained significantly higher fresh weight, chlorophyll content, and relative water content than wild type (wt) and null segregant (ns) controls, under both osmotic and salinity stress. The OsGS1;1/OsGS2 co-overexpressing transgenic plants accumulated higher levels of proline but showed lower electrolyte leakage and had lower malondialdehyde (MDA) content under the stress treatments. The transgenic lines showed considerably enhanced photosynthetic and agronomic performance under drought and salinity stress imposed during the reproductive stage, as compared to wt and ns control plants. The grain filling rates of the transgenic rice plants under reproductive stage drought stress (64.6 ± 4.7%) and salinity stress (58.2 ± 4.5%) were significantly higher than control plants, thereby leading to higher yields under these abiotic stress conditions. Preliminary analysis also revealed that the transgenic lines had improved tolerance to methyl viologen induced photo-oxidative stress. Taken together, our results demonstrate that the concurrent overexpression of OsGS1;1 and OsGS2 isoforms in rice enhanced physiological tolerance and agronomic performance under adverse abiotic stress conditions, apparently acting through multiple mechanistic routes. The transgenic rice plants also showed limited tolerance to the herbicide Glufosinate. The advantages and limitations of glutamine synthetase overexpression in crop plants, along with future strategies to overcome these limitations for utilization in crop improvement have also been discussed briefly.