Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Phys Rev Lett ; 123(18): 184501, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763923

RESUMO

Stationary wave groups exist in a range of nonlinear dispersive media, including optics, Bose-Einstein condensates, plasma, and hydrodynamics. We report experimental observations of nonlinear surface gravity X waves, i.e., X-shaped wave envelopes that propagate over long distances with constant form. These can be described by the 2D+1 nonlinear Schrödinger equation, which predicts a balance between dispersion and diffraction when the envelope (the arms of the X) travel at ±arctan(1/sqrt[2])≈±35.26° to the carrier wave. Our findings may help improve understanding the lifetime of extremes in directional seas and motivate further studies in other nonlinear dispersive media.

2.
Proc Natl Acad Sci U S A ; 113(24): 6617-22, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247397

RESUMO

Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y(-1) of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y(-1), equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the "hotspots," largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m(-2)⋅y(-1)), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.

3.
J Environ Manage ; 145: 170-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25036557

RESUMO

Land-use suitability analyses are of considerable use in the planning of mega-cities. An Urban Development Land-use Suitability Mapping (UDLSM) approach has been constructed, based on opportunity and constraint criteria. Two Multi-criteria Evaluation (MCE) methods, the Ideal Point Method (IPM) and Ordered Weighted Averaging (OWA), were used to generate the opportunity map. The protection map was obtained by means of constraint criteria, utilizing the Boolean union operator. A suitability map was then generated by overlaying the opportunity and protection maps. By applying the UDLSM approach to Beijing, its urban development land-use suitability was mapped, and a sensitivity analysis undertaken to examine the robustness of the proposed approach. Indirect validation was achieved by mutual comparisons of suitability maps resulting from the two MCE methods, where the overall agreement of 91% and kappa coefficient of 0.78 indicated that both methods provide very similar spatial land-use suitability distributions. The suitability level decreases from central Beijing to its periphery, and the area classed as suitable amounts to 28% of the total area. Leading attributes of each opportunity factor for suitability were revealed, with 2256 km(2), i.e. 70%, of existing development land being overlaid by suitable areas in Beijing. Conflicting parcels of land were identified by overlaying the resultant map with two previous development blueprints for Beijing. The paper includes several recommendations aimed at improving the long-term urban development plans for Beijing.


Assuntos
Planejamento de Cidades , China , Cidades , Sistemas de Informação Geográfica , Modelos Teóricos , Reforma Urbana
4.
Water Res ; 258: 121763, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38759286

RESUMO

Human gut antibiotic resistome widely occur in anoxic environments characterized by high density of bacterial cells and frequent transmission of antibiotic resistance genes (ARGs). Such resistome is greatly diluted, degraded, and restrained in the aerobic habitats within most natural rivers (regarded as "terrestrial guts") connecting continents and the oceans. Here we implemented a large-scale monitoring campaign extending 5,200 km along the Yellow River, and provide the first integral biogeographic pattern for both ARGs and their hosts. We identified plentiful ARGs (24 types and 809 subtypes) and their hosts (24 phyla and 757 MAGs) in three media (water, suspended particulate matter (SPM), and sediment). Unexpectedly, we found diverse human gut bacteria (HGB) acting as supercarriers of ARGs in this oxygen-rich river. We further discovered that numerous microhabitats were created within stratified biofilms that surround SPMs, particularly regarding the aggregation of anaerobic HGB. These microhabitats provide numerous ideal sinks for anaerobic bacteria and facilitate horizontal transfer of ARGs within the stratified biofilms, Furthermore, the stratification of biofilms surrounding SPMs has facilitated synergy between human gut flora and denitrifiers for propagation of ARGs in the anoxic atmospheres, leading to high occurrence of human gut antibiotic resistome. SPMs play active roles in the dynamic interactions of river water and sediment, thus accelerating the evolution of riverine resistome and transmission of human gut antibiotic resistome. This study revealed the special contribution of SPMs to the propagation of ARGs, and highlighted the necessity of making alternative strategies for sustainable management of large rivers with hyper-concentrated sediment-laden flows.


Assuntos
Resistência Microbiana a Medicamentos , Sedimentos Geológicos , Rios , Rios/microbiologia , Humanos , Sedimentos Geológicos/microbiologia , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Biofilmes/efeitos dos fármacos
5.
Water Res ; 257: 121747, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733964

RESUMO

Contamination of aquifers by a combination of vanadate [V(V)] and nitrate (NO3-) is widespread nowadays. Although bioremediation of V(V)- and nitrate-contaminated environments is possible, only a limited number of functional species have been identified to date. The present study demonstrates the effectiveness of V(V) reduction and denitrification by a denitrifying bacterium Acidovorax sp. strain BoFeN1. The V(V) removal efficiency was 76.5 ± 5.41 % during 120 h incubation, with complete removal of NO3- within 48 h. Inhibitor experiments confirmed the involvement of electron transport substances and denitrifying enzymes in the bioreduction of V(V) and NO3-. Cyt c and riboflavin were important for extracellular V(V) reduction, with quinone and EPS more significant for NO3- removal. Intracellular reductive compounds including glutathione and NADH directly reduce V(V) and NO3-. Reverse transcription quantitative PCR confirmed the important roles of nirK and napA genes in regulating V(V) reduction and denitrification. Bioaugmentation by strain BoFeN1 increased V(V) and NO3- removal efficiency by 55.3 % ± 2.78 % and 42.1 % ± 1.04 % for samples from a contaminated aquifer. This study proposes new microbial resources for the bioremediation of V(V) and NO3-contaminated aquifers, and contributes to our understanding of coupled vanadium, nitrogen, and carbon biogeochemical processes.


Assuntos
Biodegradação Ambiental , Comamonadaceae , Desnitrificação , Nitratos , Oxirredução , Vanadatos , Comamonadaceae/metabolismo , Comamonadaceae/genética , Vanadatos/metabolismo , Nitratos/metabolismo , Poluentes Químicos da Água/metabolismo , Água Subterrânea/microbiologia
6.
Microbiome ; 11(1): 152, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468948

RESUMO

BACKGROUND: Microbes constitute almost the entire biological community in subsurface groundwater and play an important role in ecological evolution and global biogeochemical cycles. Ecological baseline as a fundamental reference with less human interference has been investigated in surface ecosystems such as soils, rivers, and ocean, but the existence of groundwater microbial ecological baseline (GMEB) is still an open question so far. RESULTS: Based on high-throughput sequencing information derived from national monitoring of 733 newly constructed wells, we find that bacterial communities in pristine groundwater exhibit a significant lateral diversity gradient and gradually approach the topsoil microbial latitudinal diversity gradient with decreasing burial depth of phreatic water. Among 74 phyla dominated by Proteobacteria in groundwater, Patescibacteria act as keystone taxa that harmonize microbes in shallower aquifers and accelerate decline in bacterial diversity with increasing well-depth. Decreasing habitat niche breadth with increasing well-depth suggests a general change in the relationship among key microbes from closer cooperation in shallow to stronger competition in deep groundwater. Unlike surface-water microbes, microbial communities in pristine groundwater are predominantly shaped by deterministic processes, potentially associated with nutrient sequestration under dark and anoxic environments in aquifers. CONCLUSIONS: By unveiling the biogeographic patterns and mechanisms controlling the community assembly of microbes in pristine groundwater throughout China, we firstly confirm the existence of GMEB in shallower aquifers and propose Groundwater Microbial Community Index (GMCI) to evaluate anthropogenic impact, which highlights the importance of GMEB in groundwater water security and health diagnosis. Video Abstract.


Assuntos
Água Subterrânea , Microbiota , Bactérias/genética , Biota , Água Subterrânea/microbiologia , Microbiota/genética , Água
7.
J Hazard Mater ; 422: 126932, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34419844

RESUMO

Elevated selenium levels in the environment, with soluble selenate [Se(VI)] as the common chemical species, pose a severe threat to human health. Anaerobic Se(VI) bioreduction is a promising approach for selenium detoxification, and various organic/inorganic electron donors have proved effective in supporting this bioprocess. Nevertheless, autotrophic Se(VI) bioreduction driven by solid inorganic electron donors is still not fully understood. This work is the first to employ elemental sulfur [S(0)] as electron donor to support Se(VI) bioreduction. A batch trial with mixed culture demonstrated the feasibility of this bioprocess, with Se(VI) removal efficiency of 92.4 ± 0.7% at an initial Se(VI) concentration of 10 mg/L within 36 h. Continuous column tests showed that increased initial concentration, flow rate, and introduction of NO3--N depressed Se(VI) removal. Se(VI) was mainly bioreduced to solid elemental Se with trace selenite in the effluent, while S(0) was oxidized to SO42-. Enrichment of Thiobacillus, Desulfurivibrio, and Sulfuricurvum combined with upregulation of genes serA, tatC, and soxB indicated Se(VI) bioreduction was coupled to S(0) oxidation. Thiobacillus performed S(0) oxidation and Se(VI) reduction independently. Intermediate metabolites as volatile fatty acids, hydrogen and methane from S(0) oxidation were utilized by heterotrophic Se(VI) reducers for Se(VI) detoxification, indicative of microbial synergy.


Assuntos
Compostos de Selênio , Selênio , Humanos , Oxirredução , Ácido Selênico , Ácido Selenioso , Enxofre
8.
Nat Commun ; 13(1): 4124, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840591

RESUMO

Climate projections are essential for decision-making but contain non-negligible uncertainty. To reduce projection uncertainty over Asia, where half the world's population resides, we develop emergent constraint relationships between simulated temperature (1970-2014) and precipitation (2015-2100) growth rates using 27 CMIP6 models under four Shared Socioeconomic Pathways. Here we show that, with uncertainty successfully narrowed by 12.1-31.0%, constrained future precipitation growth rates are 0.39 ± 0.18 mm year-1 (29.36 mm °C-1, SSP126), 0.70 ± 0.22 mm year-1 (20.03 mm °C-1, SSP245), 1.10 ± 0.33 mm year-1 (17.96 mm °C-1, SSP370) and 1.42 ± 0.35 mm year-1 (17.28 mm °C-1, SSP585), indicating overestimates of 6.0-14.0% by the raw CMIP6 models. Accordingly, future temperature and total evaporation growth rates are also overestimated by 3.4-11.6% and -2.1-13.0%, respectively. The slower warming implies a lower snow cover loss rate by 10.5-40.2%. Overall, we find the projected increase in future water availability is overestimated by CMIP6 over Asia.


Assuntos
Mudança Climática , Água , Ásia , Clima , Modelos Teóricos
9.
Microbiome ; 10(1): 111, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35897057

RESUMO

BACKGROUND: Antibiotic resistome has been found to strongly interact with the core microbiota in the human gut, yet little is known about how antibiotic resistance genes (ARGs) correlate with certain microbes in large rivers that are regarded as "terrestrial gut." RESULTS: By creating the integral pattern for ARGs and antibiotic-resistant microbes in water and sediment along a 4300-km continuum of the Yangtze River, we found that human pathogen bacteria (HPB) share 13.4% and 5.9% of the ARG hosts in water and sediment but contribute 64% and 46% to the total number of planktonic and sedimentary ARGs, respectively. Moreover, the planktonic HPB harbored 79 ARG combinations that are dominated by "natural" supercarriers (e.g., Rheinheimera texasensis and Noviherbaspirillum sp. Root189) in river basins. CONCLUSIONS: We confirmed that terrestrial HPB are the major ARG hosts in the river, rather than conventional supercarriers (e.g., Enterococcus spp. and other fecal indicator bacteria) that prevail in the human gut. The discovery of HPB as natural supercarriers in a world's large river not only interprets the inconsistency between the spatial dissimilarities in ARGs and their hosts, but also highlights the top priority of controlling terrestrial HPB in the future ARG-related risk management of riverine ecosystems globally. Video Abstract.


Assuntos
Microbiota , Rios , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos/genética , Humanos , Plâncton , Rios/microbiologia , Água
10.
Natl Sci Rev ; 9(6): nwac013, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35673534

RESUMO

Dams are often regarded as greenhouse gas (GHG) emitters. However, our study indicated that the world's largest dam, the Three Gorges Dam (TGD), has caused significant drops in annual average emissions of CO2, CH4 and N2O over 4300 km along the Yangtze River, accompanied by remarkable reductions in the annual export of CO2 (79%), CH4 (50%) and N2O (9%) to the sea. Since the commencement of its operation in 2003, the TGD has altered the carbonate equilibrium in the reservoir area, enhanced methanogenesis in the upstream, and restrained methanogenesis and denitrification via modifying anoxic habitats through long-distance scouring in the downstream. These findings suggest that 'large-dam effects' are far beyond our previous understanding spatiotemporally, which highlights the fundamental importance of whole-system budgeting of GHGs under the profound impacts of huge dams.

11.
Nat Commun ; 13(1): 7354, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446773

RESUMO

More than two billion people worldwide have suffered thyroid disorders from either iodine deficiency or excess. By creating the national map of groundwater iodine throughout China, we reveal the spatial responses of diverse health risks to iodine in continental groundwater. Greater non-carcinogenic risks relevant to lower iodine more likely occur in the areas of higher altitude, while those associated with high groundwater iodine are concentrated in the areas suffered from transgressions enhanced by land over-use and intensive anthropogenic overexploitation. The potential roles of groundwater iodine species are also explored: iodide might be associated with subclinical hypothyroidism particularly in higher iodine regions, whereas iodate impacts on thyroid risks in presence of universal salt iodization exhibit high uncertainties in lower iodine regions. This implies that accurate iodine supply depending on spatial heterogeneity and dietary iodine structure optimization are highly needed to mitigate thyroid risks in iodine-deficient and -excess areas globally.


Assuntos
Água Subterrânea , Iodo , Humanos , Iodetos , Glândula Tireoide , Cloreto de Sódio na Dieta/efeitos adversos
12.
Sci Bull (Beijing) ; 67(5): 547-556, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546176

RESUMO

Reconstruction of natural streamflow is fundamental to the sustainable management of water resources. In China, previous reconstructions from sparse and poor-quality gauge measurements have led to large biases in simulation of the interannual and seasonal variability of natural flows. Here we use a well-trained and tested land surface model coupled to a routing model with flow direction correction to reconstruct the first high-quality gauge-based natural streamflow dataset for China, covering all its 330 catchments during the period from 1961 to 2018. A stronger positive linear relationship holds between upstream routing cells and drainage areas, after flow direction correction to 330 catchments. We also introduce a parameter-uncertainty analysis framework including sensitivity analysis, optimization, and regionalization, which further minimizes biases between modeled and inferred natural streamflow from natural or near-natural gauges. The resulting behavior of the natural hydrological system is represented properly by the model which achieves high skill metric values of the monthly streamflow, with about 83% of the 330 catchments having Nash-Sutcliffe efficiency coefficient (NSE) > 0.7, and about 56% of the 330 catchments having Kling-Gupta efficiency coefficient (KGE) > 0.7. The proposed construction scheme has important implications for similar simulation studies in other regions, and the developed low bias long-term national datasets by statistical postprocessing should be useful in supporting river management activities in China.


Assuntos
Rios , Recursos Hídricos , Simulação por Computador , Hidrologia , China
13.
J Environ Manage ; 92(8): 2047-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21507560

RESUMO

Carrying Capacity of the Environment (CCE) provides a useful measure of the sustainable development of a region. Approaches that use integrated assessment instead of measurement can lead to misinterpretation of sustainable development because of confusion between Environmental Stress (ES) indexes and CCE indexes, and the selection of over-simple linear plus models. The present paper proposes a comprehensive measurement system for CCE which comprises models of natural resources capacity, environmental assimilative capacity, ecosystem services capacity, and society supporting capacity. The corresponding measurable indexes are designed to assess CCE using a carrying capacity surplus ratio model and a vector of surplus ratio of carrying capacity model. The former aims at direct comparison of ES and CCE based on the values of basic indexes, and the latter uses a Euclidean vector to assess CCE states. The measurement and assessment approaches are applicable to Strategic Environmental Assessment (SEA) and environmental planning and management. A case study is presented for Ningbo, China, whereby all the basic indexes of ECC are measured and the CCE states assessed for 2005 and 2010.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Modelos Teóricos , China , Política Ambiental
14.
Nat Commun ; 12(1): 5940, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642346

RESUMO

Solute-induced river syndromes have grown in intensity in recent years. Here we investigate seven such river syndromes (salinization, mineralization, desalinization, acidification, alkalization, hardening, and softening) associated with global trends in major solutes (Ca2+, Mg2+, Na+, K+, SO42-, Cl-, HCO3-) and dissolved silica in the world's large rivers (basin areas ≥ 1000 km2). A comprehensive dataset from 600 gauge stations in 149 large rivers reveals nine binary patterns of co-varying trends in runoff and solute concentration. Solute-induced river syndromes are associated with remarkable increases in total dissolved solids (68%), chloride (81%), sodium (86%) and sulfate (142%) fluxes from rivers to oceans worldwide. The syndromes are most prevalent in temperate regions (30~50°N and 30~40°S based on the available data) where severe rock weathering and active human interferences such as urbanization and agricultural irrigation are concentrated. This study highlights the urgency to protect river health from extreme changes in solute contents.

15.
J Environ Manage ; 91(4): 1021-31, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20079566

RESUMO

This paper presents an approach for rapid assessment of sustainability for Mainland China based on a multilayer index system. Efficient assessment is conducted with the basic mapping units at county and city levels. After evaluating a comprehensive sustainable development index, SDI, for each unit, five rankings of sustainability are determined, and a zonation map produced. Regional characteristics and differences are interpreted through macro-analysis of the spatial variation in SDI. A sensitivity analysis is performed by which the weights of the sub-indices are altered by +/-20%, and SDI re-evaluated; the resulting grades remain the same, thus confirming the robustness of the technique. Moreover, the accuracy of the proposed approach is indirectly validated by comparison with assessment results from an alternative systems analysis method. It is found that major conurbations such as Beijing have relatively high levels of sustainability, whereas provinces in central and western China require investment to improve their sustainability.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Mudança Social , China , Cidades , Geografia
16.
J Environ Manage ; 91(10): 1930-42, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20627544

RESUMO

An understanding of flood impact in terms of sustainability is vital for long-term disaster risk reduction. This paper utilizes two important concepts: conventional insurance related flood risk for short-term damage by specific flood events, and long-term flood impact on sustainability. The Insurance Related Flood Risk index, IRFR, is defined as the product of the Flood Hazard Index (FHI) and Vulnerability. The Long-term Flood Impact on Sustainability index, LFIS, is the ratio of the flood hazard index to the Sustainable Development Index (SDI). Using a rapid assessment approach, quantitative assessments of IRFR and LFIS are carried out for 2339 counties and cities in mainland China. Each index is graded from 'very low' to 'very high' according to the eigenvalue magnitude of cluster centroids. By combining grades of FHI and SDI, mainland China is then classified into four zones in order to identify regional variations in the potential linkage between flood hazard and sustainability. Zone I regions, where FHI is graded 'very low' or 'low' and SDI is 'medium' to 'very high', are mainly located in western China. Zone II regions, where FHI and SDI are 'medium' or 'high', occur in the rapidly developing areas of central and eastern China. Zone III regions, where FHI and SDI are 'very low' or 'low', correspond to the resource-based areas of western and north-central China. Zone IV regions, where FHI is 'medium' to 'very high' and SDI is 'very low' to 'low', occur in ecologically fragile areas of south-western China. The paper also examines the distributions of IRFR and LFIS throughout mainland China. Although 57% of the counties and cities have low IRFR values, 64% have high LFIS values. The modal values of LFIS are ordered as Zone I

Assuntos
Desastres , Meio Ambiente , Inundações , China , Conservação dos Recursos Naturais , Monitoramento Ambiental , Geografia , Medição de Risco
17.
J Hazard Mater ; 389: 121911, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31879105

RESUMO

To date, comparatively little is known about the role of natural Fe(II)-bearing minerals in bioremediation of chromium (VI) contaminated aquifers subject to chemoautotrophic conditions. This work employed four kinds of Fe(II)-bearing minerals (pyrite, mackinawite, wustite, and magnetite) as inorganic electron donors to support Cr(VI) bio-reduction. In batch experiments, mackinawite (FeS) performed best, with Cr(VI) removal efficiency of 98.1 ±â€¯1.21 % in 96 h. Continuous column experiments lasting 180 d implied that groundwater chemistry and hydrodynamics influenced the Cr(VI) removal process. A breakthrough study suggested that biotic and abiotic contributions to Cr(VI) reduction were 76.0 ±â€¯1.12 % and 24.1 ±â€¯1.43 %, respectively. Cr(VI) was reduced to insoluble Cr(III), whereas Fe(II) and S(-II) in mackinawite were finally oxidized to Fe(III) and sulfate. Mackinawite evolved progressively into pyrrhotite. High-throughput 16S rRNA gene sequencing indicated that mackinawite-driven Cr(VI) reduction was mediated through synergistic interactions of microbial consortia; i.e. autotrophs as Acidovorax synthesized volatile fatty acids as metabolic intermediates, which were consumed by Cr(VI) reducers as Geobacter. Genes encoding enzymes for S oxidation (soxB) and Cr(VI) reduction (chrA, yieF) were upregulated. Cytochrome c participating in Fe(II) oxidation increased significantly. This work advances the development of sustainable techniques for Cr(VI) polluted groundwater remediation.


Assuntos
Bactérias/metabolismo , Cromo/metabolismo , Compostos Ferrosos/farmacologia , Minerais/farmacologia , Poluentes Químicos da Água/metabolismo , Bactérias/efeitos dos fármacos , Biodegradação Ambiental , Cromo/química , Compostos Ferrosos/química , Água Subterrânea/química , Água Subterrânea/microbiologia , Minerais/química , Modelos Químicos , Oxirredução , Poluentes Químicos da Água/química
18.
Environ Pollut ; 263(Pt A): 114540, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302894

RESUMO

Whereas there is broad consensus that smelting causes serious soil contamination during vanadium production, little is known about the vanadium content of soil near smelters and the associated health risk at continental scale. This study is the first to map the distribution of vanadium in farmland soil surrounding smelters throughout mainland China, and assess the associated health risk. Analysis of 76 samples indicated that the average vanadium content in such soil was 115.5 mg/kg - far higher than the 82 mg/kg background content in China (p < 0.05). Southwest China (198.0 mg/kg) and North China (158.3 mg/kg) possessed highest vanadium contents. Vanadium content was strongly related to longitude, altitude, and atmospheric temperature. The reducible fraction accounted for the largest percentages in vanadium speciation. The average Pollution Load Index for all samples was 1.51, denoting significant metal enrichment. The Children's hazard index was higher than unity, indicating elevated health risk. The relative contribution of vanadium to the total health risk ranged from 6.02% to 34.5%, while nickel and chromium were the two main contributors in most regions. This work may serve as a model providing an overview of continental vanadium contamination around smelters, and draw attention to their possible health risks.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Criança , China , Monitoramento Ambiental , Fazendas , Humanos , Medição de Risco , Solo , Vanádio/análise
19.
Nat Commun ; 11(1): 1553, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214097

RESUMO

Sustainable inland waterways should meet the needs of navigation without compromising the health of riverine ecosystems. Here we propose a hierarchical model to describe sustainable development of the Golden Inland Waterways (GIWs) which are characterized by great bearing capacity and transport need. Based on datasets from 66 large rivers (basin area > 100,000 km2) worldwide, we identify 34 GIWs, mostly distributed in Asia, Europe, North America, and South America, typically following a three-stage development path from the initial, through to the developing and on to the developed stage. For most GIWs, the exploitation ratio, defined as the ratio of actual to idealized bearing capacity, should be less than 80% due to ecological considerations. Combined with the indices of regional development, GIWs exploitation, and riverine ecosystem, we reveal the global diversity and evolution of GIWs' sustainability from 2015 to 2050, which highlights the importance of river-specific strategies for waterway exploitation worldwide.

20.
Sci Total Environ ; 709: 136062, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31887524

RESUMO

We investigate global trends in seasonal water discharge using data from 5668 hydrological stations in catchments whose total drainage area accounts for 2/3 of the Earth's total land area. Homogenization of water discharge, which occurs when the gap in water discharge between dry and flood seasons shrinks significantly, affects catchments occupying 2/5 of the total land area, and is mainly concentrated in Eurasia and North America. By contrast, polarization of water discharge, associated with widening of the gap in water discharge between dry and flood seasons, occurs in catchments covering 1/6 of the land area, most notably in the Amazon Basin and river basins in West Africa. Considering the major climatic and anthropogenic controlling factors, i.e. precipitation (P), evaporation (E), glacial runoff (G), and dam operations (D), the world's river basins are classified as P, DEP, GEP, and EP types. Contributions from each controlling factor to either the homogenization or polarization of the seasonal water discharge for each type of river have been analyzed. We found that homogenization of discharge is dominated by dam operations in GDEP and DEP river basins (contributing 48% and 64%) and by homogenized precipitation in GEP and EP river basins. Evaporation and precipitation are primary factors behind the polarization of discharge, contributing 56% and 41%. This study provides a basis for a possible decision tool for controlling drought/flood disasters and for assessing and preventing ecological damage in endangered regions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa