Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Pharmacogenet Genomics ; 34(4): 91-104, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682317

RESUMO

OBJECTIVES: This study explored the association of deleterious variants in pharmacodynamics (PD) genes with statin response and adverse effects in patients with familial hypercholesterolemia (FH) and analyzed their potential effects on protein structure and stability. METHODS: Clinical and laboratory data were obtained from 144 adult FH patients treated with statins. A panel of 32 PD genes was analyzed by exon-targeted gene sequencing. Deleterious variants were identified using prediction algorithms and their structural effects were analyzed by molecular modeling studies. RESULTS: A total of 102 variants were predicted as deleterious (83 missense, 8 stop-gain, 4 frameshift, 1 indel, 6 splicing). The variants ABCA1 rs769705621 (indel), LPA rs41267807 (p.Tyr2023Cys) and KIF6 rs20455 (p.Trp719Arg) were associated with reduced low-density lipoprotein cholesterol (LDLc) response to statins, and the LPL rs1801177 (p.Asp36Asn) with increased LDLc response (P < 0.05). LPA rs3124784 (p.Arg2016Cys) was predicted to increase statin response (P = 0.022), and ABCA1 rs769705621 to increase the risk of statin-related adverse events (SRAE) (P = 0.027). LPA p.Arg2016Cys and LPL p.Asn36Asp maintained interactions with solvent, LPA p.Tyr2023Cys reduced intramolecular interaction with Gln1987, and KIF6 p.Trp719Arg did not affect intramolecular interactions. DDMut analysis showed that LPA p.Arg2016Cys and p.Tyr2023Cys and LPL p.Asp36Asn caused energetically favorable changes, and KIF6 p.Trp719Arg resulted in unfavorable energetic changes, affecting protein stability. CONCLUSION: Deleterious variants in ABCA1, LPA, LPL and KIF6 are associated with variability in LDLc response to statins, and ABCA1 rs769705621 is associated with SRAE risk in FH patients. Molecular modeling studies suggest that LPA p.Tyr2023Cys and KIF6 p.Trp719Arg disturb protein conformational structure and stability.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemia Tipo II , Cinesinas , Lipase Lipoproteica , Humanos , Cinesinas/genética , Masculino , Feminino , Pessoa de Meia-Idade , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/genética , Lipase Lipoproteica/genética , Adulto , Estabilidade Proteica , LDL-Colesterol/sangue , Polimorfismo de Nucleotídeo Único
2.
Mol Biol Rep ; 50(11): 9165-9177, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776414

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is caused by pathogenic variants in low-density lipoprotein (LDL) receptor (LDLR) or its associated genes, including apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDLR adaptor protein 1 (LDLRAP1). However, approximately 40% of the FH patients clinically diagnosed (based on FH phenotypes) may not carry a causal variant in a FH-related gene. Variants located at 3' untranslated region (UTR) of FH-related genes could elucidate mechanisms involved in FH pathogenesis. This study used a computational approach to assess the effects of 3'UTR variants in FH-related genes on miRNAs molecular interactions and to explore the association of these variants with molecular diagnosis of FH. METHODS AND RESULTS: Exons and regulatory regions of FH-related genes were sequenced in 83 FH patients using an exon-target gene sequencing strategy. In silico prediction tools were used to study the effects of 3´UTR variants on interactions between miRNAs and target mRNAs. Pathogenic variants in FH-related genes (molecular diagnosis) were detected in 44.6% FH patients. Among 59 3'UTR variants identified, LDLR rs5742911 and PCSK9 rs17111557 were associated with molecular diagnosis of FH, whereas LDLR rs7258146 and rs7254521 and LDLRAP1 rs397860393 had an opposite effect (p < 0.05). 3´UTR variants in LDLR (rs5742911, rs7258146, rs7254521) and PCSK9 (rs17111557) disrupt interactions with several miRNAs, and more stable bindings were found with LDLR (miR-4435, miR-509-3 and miR-502) and PCSK9 (miR-4796). CONCLUSION: LDLR and PCSK9 3´UTR variants disturb miRNA:mRNA interactions that could affect gene expression and are potentially associated with molecular diagnosis of FH.


Assuntos
Hiperlipoproteinemia Tipo II , MicroRNAs , Humanos , Pró-Proteína Convertase 9/genética , Regiões 3' não Traduzidas/genética , MicroRNAs/genética , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Receptores de LDL/genética , Mutação
3.
Plant Foods Hum Nutr ; 76(4): 466-471, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34581915

RESUMO

Passiflora edulis fo. flavicarpa (Passifloraceae) is popularly known as yellow passion fruit and its fruit peels are considered a rich by-product in bioactive compounds which has greatly beneficial health properties. The objective of this study was to evaluate the effects of P. edulis fruit peel extracts in a type 1 diabetes model and the potential vasorelaxant effect. The aqueous and hydroethanolic extracts were obtained from P. edulis fruit peels and orientin and isorientin flavonoids were identified in both extracts through ultra-high performance liquid chromatography. Pectin was only identified in the aqueous extract by high-performance steric exclusion chromatography and nuclear magnetic resonance. Regarding the vascular system, the hydroethanolic extract showed better vasorelaxant effects in the mesenteric artery rings when compared to the aqueous extract. These effects mainly occur by opening the potassium channels. In the type 1 diabetes model, extracts at doses of 400 and 600 mg/kg were able to restore the effect of insulin in diabetic rats which were not responding to its action. The antidiabetic effect was more significant for the aqueous extract. Thus, the results suggest that the hydroethanolic and aqueous extracts have greater potential to be used to treat cardiovascular diseases such as hypertension and as a hypoglycemic agent, respectively. Taken together, P. edulis fruit peel extracts proved to be a source of valuable bioactive raw material to produce nutraceuticals or pharmaceutical products.


Assuntos
Diabetes Mellitus Experimental , Passiflora , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Frutas , Hipoglicemiantes/farmacologia , Pectinas , Extratos Vegetais/farmacologia , Ratos , Vasodilatadores/farmacologia
4.
J Paediatr Child Health ; 55(4): 411-415, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30218466

RESUMO

AIM: To evaluate glycaemic control and its influence on albuminuria and bone mineral density (BMD) in children and adolescents with type 1 diabetes (T1D). METHODS: We collectively assessed 84 T1D children/adolescents (T1D group), aged between 6 and 17 years, and then divided them into two groups according to their glycaemic profile (T1D with good glycaemic control (T1DG group) and T1D with poor glycaemic control (T1DP group)). Serum glucose, glycated haemoglobin, serum urea, serum creatinine, urinary albumin-to-creatinine ratio (ACR), estimated glomerular filtration rate and BMD levels were assessed. RESULTS: Of the patients studied, 77% presented with poor glycaemic control. Patients with T1DP showed an increased ACR (P < 0.001) and a low BMD (P = 0.025) when compared to the T1DG group. In addition, five patients in the T1DP group presented with concomitant albuminuria and a low BMD for their chronological age. Significant negative correlations were identified between the ACR and glycated haemoglobin (r = 0.655, P < 0.001), BMD and glycated haemoglobin (r = -0.262, P = 0.047) and BMD and the ACR (r = -0.631, P = <0.001). In linear regression analysis, the ACR showed a negative effect on BMD (P = 0.044) in the T1D patient group. CONCLUSION: Poor glycaemic control was correlated with albuminuria, suggestive of a negative effect on bone tissue, leading to a low BMD in children and adolescents with T1D.


Assuntos
Albuminúria/epidemiologia , Doenças Ósseas Metabólicas/epidemiologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Hemoglobinas Glicadas/análise , Índice Glicêmico , Adolescente , Fatores Etários , Albuminúria/diagnóstico , Glicemia/análise , Doenças Ósseas Metabólicas/diagnóstico por imagem , Brasil , Criança , Bases de Dados Factuais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Feminino , Taxa de Filtração Glomerular , Hospitais Pediátricos , Humanos , Incidência , Modelos Lineares , Masculino , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de Doença , Fatores Sexuais , Estatísticas não Paramétricas
5.
J Clin Lab Anal ; 32(6): e22428, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29512191

RESUMO

BACKGROUND: Although more than 14 loci may be involved in the development of nonsyndromic cleft lip and palate (NSCLP), the etiology has not been fully elucidated due to genetic and environmental risk factor interactions. Despite advances in identifying genes associated with the NSCLP development using traditional genetic mapping strategies of candidate genes, genome-wide studies, and epidemiologic and linkage analysis, microarray techniques have become important complementary tools in the search for potential causative oral clefts genes in genetic studies. Microarray hybridization enables scanning of the whole genome and detecting copy number variants (CNVs). Although common benign CNVs are often smaller, with sizes smaller than 20 kb, here we reveal small exonic CNVs based on the importance of the encompassed genes in cleft lip and palate phenotype. METHODS: Microarray hybridization analysis was performed in 15 individuals with NSCLP. RESULTS: We identified 11 exonic CNVs affecting at least one exon of the candidate genes. Thirteen candidate genes (COL11A1-1p21; IRF6-1q32.3; MSX1-4p16.2; TERT-5p15.33; MIR4457-5p15.33; CLPTM1L-5p15.33; ESR1-6q25.1; GLI3-7p13; FGFR-8p11.23; TBX1-22q11.21; OFD-Xp22; PHF8-Xp11.22; and FLNA-Xq28) overlapped with the CNVs identified. CONCLUSIONS: Considering the importance to NSCLP, the microdeletions that encompass MSX1, microduplications over TERT, MIR4457, CLPTM1L, and microduplication of PHF8 have been identified as small CNVs related to sequence variants associated with oral clefts susceptibility. Our findings represent a preliminary study on the clinical significance of small CNVs and their relationship with genes implicated in NSCLP.

6.
Int J Mol Sci ; 19(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404181

RESUMO

Evidence shows that metformin is an antidiabetic drug, which can exert favorable anti-inflammatory effects and decreased bone loss. The development of nanoparticles for metformin might be useful for increased therapeutic efficacy. The aim of this study was to evaluate the effect of metformin hydrochloride-loaded Poly (d,l-Lactide-co-glycolide) (PLGA)/(MET-loaded PLGA) on a ligature-induced periodontitis model in diabetic rats. MET-loaded PLGA were characterized by mean diameter, particle size, polydispensity index, and entrapment efficiency. Maxillae were scanned using Microcomputed Tomography (µCT) and histopathological and immunohistochemical analysis. IL-1ß and TNF-α levels were analyzed by ELISA immunoassay. Quantitative RT-PCR was used (AMPK, NF-κB p65, HMGB1, and TAK-1). The mean diameter of MET-loaded PLGA nanoparticles was in a range of 457.1 ± 48.9 nm (p < 0.05) with a polydispersity index of 0.285 (p < 0.05), Z potential of 8.16 ± 1.1 mV (p < 0.01), and entrapment efficiency (EE) of 66.7 ± 3.73. Treatment with MET-loaded PLGA 10 mg/kg showed low inflammatory cells, weak staining by RANKL, cathepsin K, OPG, and osteocalcin, and levels of IL-1ß and TNF-α (p < 0.05), increased AMPK expression gene (p < 0.05) and decreased NF-κB p65, HMGB1, and TAK-1 (p < 0.05). It is concluded that MET-loaded PLGA decreased inflammation and bone loss in periodontitis in diabetic rats.


Assuntos
Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/patologia , Animais , Biomarcadores , Glicemia/efeitos dos fármacos , Citocinas/metabolismo , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Imuno-Histoquímica , Microscopia de Força Atômica , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Doenças Periodontais/diagnóstico , Doenças Periodontais/tratamento farmacológico , Doenças Periodontais/etiologia , Doenças Periodontais/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Microtomografia por Raio-X
7.
Diabetes Metab Res Rev ; 32(6): 589-95, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26663878

RESUMO

BACKGROUND: The negative effects of type 1 diabetes (T1D) on growth factors of bone metabolism lead to a reduction in bone mineral density. This study aimed to evaluate the association between bone mineral density and insulin-like growth factor 1 (IGF1), insulin-like growth factor 1 receptor (IGF1R) and transforming growth factor beta 1 (TGFB1) expressions in children and adolescents with T1D. Moreover, the influences of age at diagnosis, time since diagnosis, glycaemic control and albuminuria on bone mineral density were investigated. METHODS: Eighty-six T1D children/adolescents (T1D group) and ninety normoglycaemic controls (normoglycaemic group) were included. T1D patients were analysed as a whole and also in subsets of patients with good glycaemic control (glycated hemoglobin concentration ≤7.5%) and with poor glycaemic control (glycated hemoglobin concentration >7.5%). Bone mineral density was assessed by dual energy x-ray absorptiometry. Glycaemic control, renal function and bone markers were also assessed. IGF1, IGF1R and TGFB1 expressions were determined in peripheral blood mononuclear cells by real-time polymerase chain reaction. RESULTS: Patients with T1D showed low bone mineral density and poor glycaemic control. Serum total calcium and urinary albumin-to-creatinine ratio were higher in patients with poor glycaemic control compared to those with good glycemic control (p = 0.003 and p = 0.035, respectively). There was a reduction of IGF1, IGF1R and TGFB1 expressions in the T1D patients and in the subset with poor glycaemic control compared to normoglycaemic controls (p < 0.05). CONCLUSIONS: The decreased IGF1, IGF1R and TGFB1 expressions in the T1D patients, who presented with T1D at an early age, had been diagnosed with T1D for a longer time, had poor glycaemic control and albuminuria may contribute to low bone mineral density. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Densidade Óssea , Diabetes Mellitus Tipo 1/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores de Somatomedina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adolescente , Adulto , Biomarcadores/análise , Glicemia/análise , Estudos de Casos e Controles , Criança , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Seguimentos , Hemoglobinas Glicadas/análise , Humanos , Fator de Crescimento Insulin-Like I/genética , Masculino , Prognóstico , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Fator de Crescimento Transformador beta1/genética
8.
Lipids Health Dis ; 15: 144, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586541

RESUMO

BACKGROUND: The fatty acid profile is associated with the risk and progression of several diseases, probably via mechanisms including its influence on gene expression. We previously reported a correlation between ECHDC3 upregulation and the severity of acute coronary syndrome. Here, we assessed the relationship of serum fatty acid profile and ECHDC3 expression with the extent of coronary lesion. METHODS: Fifty-nine individuals aged 30 to 74 years and undergoing elective cinecoronariography for the first time were enrolled in the present study. The extent of coronary lesion was assessed by the Friesinger index and patients were classified as without lesion (n = 18), low lesion (n = 17), intermediate lesion (n = 17) and major lesion (n = 7). Serum biochemistry, fatty acid concentration, and ECHDC3 mRNA expression in blood were evaluated. RESULTS: Elevated serum levels of oleic acid and total monounsaturated fatty acids were observed in patients with low and intermediate lesion, when compared to patients without lesion (p < 0.05). ECHDC3 mRNA expression was 1.2 fold higher in patients with low lesion than in patients without lesion (p = 0.020), and 1.8 fold lower in patients with major lesion patients than in patients with low lesion (p = 0.023). CONCLUSION: Increased levels of monounsaturated fatty acids, especially oleic acid, and ECHDC3 upregulation in patients with coronary artery lesion suggests that these are independent factors associated with the initial progression of cardiovascular disease.


Assuntos
Doenças Cardiovasculares/genética , Ácidos Graxos Monoinsaturados/metabolismo , Ácido Oleico/metabolismo , Enzima Bifuncional do Peroxissomo/biossíntese , Adulto , Idoso , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Ácido Oleico/genética , Enzima Bifuncional do Peroxissomo/genética , RNA Mensageiro/genética
9.
PLoS One ; 19(3): e0300714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527051

RESUMO

BACKGROUND: The effects of diet on maternal and child genetic levels have been previously reported. Diet-associated DNA damage, such as the presence of micronuclei (MN), may be related to an increased risk of developing chronic diseases, such as cancer. Such damage is particularly concerning during pregnancy as it can affect the newborn. AIM: This review will aim to summarize the primary evidence of the impact of diet during pregnancy on micronucleus frequency in the maternal-newborn population. METHODS: This protocol was developed based on the Preferred Reporting Items guidelines for Systematic Reviews and Meta-analyses Protocol. The review was registered with the International Register of Prospective Systematic Reviews on February 17, 2022 (registration number: CRD42022302401). We will use PubMed, Embase, Web of Science, Scopus, Science direct, and Google databases to search for observational studies. This review will include studies that investigate the diet consumed by pregnant women and its effect on the frequency of MN in mothers and newborns without any time or language limitations. For data extraction, researchers will independently review the full text and collect information that characterizes the study and its findings. We will analyze the results by calculating the odds ratio for each type of diet evaluated, accompanied by a 95% confidence interval. We will perform a quantitative synthesis of homogeneous studies to perform a meta-analysis. Micronucleus frequency quantifies the effect and will be presented as the mean and standard deviation or median and interquartile range. EXPECTED RESULTS: This review will aim to identify which dietary patterns during pregnancy may be associated with an increase in the frequency of MN in mothers and their newborns. Understanding the impact of diet on the frequency of MN is essential to deepen studies and to propose strategies that aim to protect the health of the public through food.


Assuntos
Dieta , Gestantes , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , Metanálise como Assunto , Estudos Prospectivos , Revisões Sistemáticas como Assunto
10.
Front Cardiovasc Med ; 10: 1151855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252118

RESUMO

Background: Acute ST-elevation myocardial infarction (STEMI) can lead to adverse cardiac remodeling, resulting in left ventricular systolic dysfunction (LVSd) and heart failure. Epigenetic regulators, such as microRNAs, may be involved in the physiopathology of LVSd. Objective: This study explored microRNAs in peripheral blood mononuclear cells (PBMC) of post-myocardial infarction patients with LVSd. Methods: Post-STEMI patients were grouped as having (LVSd, n = 9) or not LVSd (non-LVSd, n = 16). The expression of 61 microRNAs was analyzed in PBMC by RT-qPCR and the differentially expressed microRNAs were identified. Principal Component Analysis stratified the microRNAs based on the development of dysfunction. Predictive variables of LVSd were investigated through logistic regression analysis. A system biology approach was used to explore the regulatory molecular network of the disease and an enrichment analysis was performed. Results: The let-7b-5p (AUC: 0.807; 95% CI: 0.63-0.98; p = 0.013), miR-125a-3p (AUC: 0.800; 95% CI: 0.61-0.99; p = 0.036) and miR-326 (AUC: 0.783; 95% CI: 0.54-1.00; p = 0.028) were upregulated in LVSd (p < 0.05) and discriminated LVSd from non-LVSd. Multivariate logistic regression analysis showed let-7b-5p (OR: 16.00; 95% CI: 1.54-166.05; p = 0.020) and miR-326 (OR: 28.00; 95% CI: 2.42-323.70; p = 0.008) as predictors of LVSd. The enrichment analysis revealed association of the targets of these three microRNAs with immunological response, cell-cell adhesion, and cardiac changes. Conclusion: LVSd alters the expression of let-7b-5p, miR-326, and miR-125a-3p in PBMC from post-STEMI, indicating their potential involvement in the cardiac dysfunction physiopathology and highlighting these miRNAs as possible LVSd biomarkers.

11.
Chem Phys Lipids ; 257: 105348, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827478

RESUMO

Familial hypercholesterolemia (FH) is a disorder of lipid metabolism that causes elevated low-density lipoprotein cholesterol (LDL-c) and increased premature atherosclerosis risk. Statins inhibit endogenous cholesterol biosynthesis, which reduces LDL-c plasma levels and prevent from cardiovascular events. This study aimed to explore the effects of statin treatment on serum lipidomic profile and to identify biomarkers of response in subjects with FH. Seventeen adult FH patients underwent a 6-week washout followed by 4-week treatment with atorvastatin (80 mg/day) or rosuvastatin (40 mg/day). LDL-c response was considered good (40-70 % reduction, n = 9) or poor (3-33 % reduction, n = 8). Serum lipidomic profile was analyzed by ultra-high-performance liquid chromatography combined with electrospray ionization tandem time-of-flight mass spectrometry, and data were analyzed using MetaboAnalyst v5.0. Lipidomic analysis identified 353 lipids grouped into 16 classes. Statin treatment reduced drastically 8 of 13 lipid classes, generating a characteristic lipidomic profile with a significant contribution of phosphatidylinositols (PI) 16:0/18:2, 18:0/18:1 and 18:0/18:2; and triacylglycerols (TAG) 18:2x2/18:3, 18:1/18:2/18:3, 16:1/18:2x2, 16:1/18:2/18:3 and 16:1/18:2/Arachidonic acid (p-adjusted <0.05). Biomarker analysis implemented in MetaboAnalyst subsequently identified PI 16:1/18:0, 16:0/18:2 and 18:0/18:2 as predictors of statin response with and receiver operating characteristic (ROC) areas under the curve of 0.98, 0.94 and 0.91, respectively. In conclusion, statins extensively modulate the overall serum lipid composition of FH individuals and these findings suggest that phosphatidyl-inositol molecules are potential predictive biomarkers of statin response.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , LDL-Colesterol , Lipidômica , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Colesterol , Biomarcadores
12.
Gene ; 853: 147084, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464169

RESUMO

Familial hypercholesterolemia (FH) is caused by deleterious mutations in the LDLR that increase markedly low-density lipoprotein (LDL) cholesterol and cause premature atherosclerotic cardiovascular disease. Functional effects of pathogenic LDLR variants identified in Brazilian FH patients were assessed using in vitro and in silico studies. Variants in LDLR and other FH-related genes were detected by exon-target gene sequencing. T-lymphocytes were isolated from 26 FH patients, and 3 healthy controls and LDLR expression and activity were assessed by flow cytometry and confocal microscopy. The impact of LDLR missense variants on protein structure was assessed by molecular modeling analysis. Ten pathogenic or likely pathogenic LDLR variants (six missense, two stop-gain, one frameshift, and one in splicing region) and six non-pathogenic variants were identified. Carriers of pathogenic and non-pathogenic variants had lower LDL binding and uptake in activated T-lymphocytes compared to controls (p < 0.05), but these variants did not influence LDLR expression on cell surface. Reduced LDL binding and uptake was also observed in carriers of LDLR null and defective variants. Modeling analysis showed that p.(Ala431Thr), p.(Gly549Asp) and p.(Gly592Glu) disturb intramolecular interactions of LDLR, and p.(Gly373Asp) and p.(Ile488Thr) reduce the stability of the LDLR protein. Docking and molecular interactions analyses showed that p.(Cys184Tyr) and p.(Gly373Asp) alter interaction of LDLR with Apolipoprotein B (ApoB). In conclusion, LDLR null and defective variants reduce LDL binding capacity and uptake in activated T-lymphocytes of FH patients and LDLR missense variants affect LDLR conformational stability and dissociation of the LDLR-ApoB complex, having a potential role in FH pathogenesis.


Assuntos
Hiperlipoproteinemia Tipo II , Humanos , LDL-Colesterol/genética , Fenótipo , Hiperlipoproteinemia Tipo II/genética , Mutação de Sentido Incorreto , Apolipoproteínas B/genética , Receptores de LDL/genética , Linfócitos T , Mutação
13.
Gene ; 851: 146979, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36261084

RESUMO

PCSK9 gain-of-function (GOF) variants increase degradation of low-density lipoprotein receptor (LDLR) and are potentially associated with Familial Hypercholesterolemia (FH). This study aimed to explore the effects of PCSK9 missense variants on protein structure and interactions with LDLR using molecular modeling analyses and in vitro functional studies. Variants in FH-related genes were identified in a Brazilian FH cohort using an exon-target gene sequencing strategy. Eight PCSK9 missense variants in pro- [p.(E32K) and p.(E57K)], catalytic [p.(R237W), p.(P279T) and p.(A443T)], and C-terminal histidine-cysteine rich (CHR) [p.(R469W), p.(Q619P) and p.(R680Q)] domains were identified. Molecular dynamics analyses revealed that GOF variants p.(E32K) and p.(R469W) increased extreme motions in PCSK9 amino acid backbone fluctuations and affected Hbond and water bridge interactions between the pro-domain and CM1 region of the CHR domain. HEK293FT cells transfected with plasmids carrying p.(E32K) and p.(R469W) variants reduced LDLR expression (8.7 % and 14.8 %, respectively) compared to wild type (p < 0.05) but these GOF variants did not affect PCSK9 expression and secretion. The missense variants p.(P279T) and p.(Q619P) also reduced protein stability and altered Hbond interactions. In conclusion, PCSK9 p.(E32K), p.(R469W), p.(P279T) and p.(Q619P) variants disrupt intramolecular interactions that are essential for PCSK9 structural conformation and biological activity and may have a potential role in FH pathogenesis.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Hiperlipoproteinemia Tipo II/genética , Mutação de Sentido Incorreto , Conformação Molecular
14.
Nutr Res ; 119: 21-32, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716291

RESUMO

Polymorphisms in genes of leptin-melanocortin and insulin pathways have been associated with obesity and type 2 diabetes. We hypothesized that polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory markers and food intake composition in Brazilian subjects. This exploratory pilot study included 358 adult subjects. Clinical, anthropometric, and laboratory data were obtained through interview and access to medical records. The variants IRS1 rs2943634 A˃C, IRS2 rs1865434 C>T, MC3R rs3746619 C>A, and MC4R rs17782313 T>C were analyzed by real-time polymerase chain reaction. Food intake composition was assessed in a group of subjects with obesity (n = 84) before and after a short-term nutritional counseling program (9 weeks). MC4R rs17782313 was associated with increased risk of obesity (P = .034). Multivariate linear regression analysis adjusted by covariates indicated associations of IRS2 rs1865434 with reduced low-density lipoprotein cholesterol and resistin, MC3R rs3746619 with high glycated hemoglobin, and IRS1 rs2943634 and MC4R rs17782313 with increased high-sensitivity C-reactive protein (P < .05). Energy intake and carbohydrate and total fat intakes were reduced after the diet-oriented program (P < .05). Multivariate linear regression analysis showed associations of IRS2 rs1865434 with high basal fiber intake, IRS1 rs2943634 with low postprogram carbohydrate intake, and MC4R rs17782313 with low postprogram total fat and saturated fatty acid intakes (P < .05). Although significant associations did not survive correction for multiple comparisons using the Benjamini-Hochberg method in this exploratory study, polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory status in Brazilian adults. IRS1 and MC4R variants may influence carbohydrate, total fat, and saturated fatty acid intakes in response to a diet-oriented program in subjects with obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Humanos , Projetos Piloto , Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Brasil , Obesidade/genética , Obesidade/metabolismo , Ingestão de Alimentos , Carboidratos , Ácidos Graxos , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo
15.
Gene ; 875: 147501, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37217153

RESUMO

Familial hypercholesterolemia (FH) is a monogenic disease characterized by high plasma low-density lipoprotein cholesterol (LDL-c) levels and increased risk of premature atherosclerotic cardiovascular disease. Mutations in FH-related genes account for 40% of FH cases worldwide. In this study, we aimed to assess the pathogenic variants in FH-related genes in the Brazilian FH cohort FHBGEP using exon-targeted gene sequencing (ETGS) strategy. FH patients (n = 210) were enrolled at five clinical sites and peripheral blood samples were obtained for laboratory testing and genomic DNA extraction. ETGS was performed using MiSeq platform (Illumina). To identify deleterious variants in LDLR, APOB, PCSK9, and LDLRAP1, the long-reads were subjected to Burrows-Wheeler Aligner (BWA) for alignment and mapping, followed by variant calling using Genome Analysis Toolkit (GATK) and ANNOVAR for variant annotation. The variants were further filtered using in-house custom scripts and classified according to the American College Medical Genetics and Genomics (ACMG) guidelines. A total of 174 variants were identified including 85 missense, 3 stop-gain, 9 splice-site, 6 InDel, and 71 in regulatory regions (3'UTR and 5'UTR). Fifty-two patients (24.7%) had 30 known pathogenic or likely pathogenic variants in FH-related genes according to the American College Medical and Genetics and Genomics guidelines. Fifty-three known variants were classified as benign, or likely benign and 87 known variants have shown uncertain significance. Four novel variants were discovered and classified as such due to their absence in existing databases. In conclusion, ETGS and in silico prediction studies are useful tools for screening deleterious variants and identification of novel variants in FH-related genes, they also contribute to the molecular diagnosis in the FHBGEP cohort.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Brasil , Hiperlipoproteinemia Tipo II/genética , Mutação , Éxons , Receptores de LDL/genética , Fenótipo
16.
Pharmacol Rep ; 73(3): 868-880, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721286

RESUMO

BACKGROUND: Statins are potent cholesterol-lowering drugs that prevent cardiovascular events. microRNAs (miRNAs) modulate the expression of genes involved in metabolic pathways and cardiovascular functions post-transcriptionally. This study explored the effects of statins on the expression of miRNAs and their target genes involved in lipid metabolism in HepG2 cells. METHODS: HepG2 cells were treated with atorvastatin or simvastatin (0.1-10 µM) for 24 h. The expression of 84 miRNAs and nine target genes, selected by in silico studies, was measured by qPCR Array and TaqMan-qPCR, respectively. RESULTS: Five miRNAs were upregulated (miR-129, miR-143, miR-205, miR-381 and miR-495) and two downregulated (miR-29b and miR-33a) in atorvastatin-treated HepG2 cells. Simvastatin also downregulated miR-33a expression. Both statins upregulated LDLR, HMGCR, LRP1, and ABCG1, and downregulated FDFT1 and ABCB1, whereas only atorvastatin increased SCAP mRNA levels. In silico analysis of miRNA-mRNA interactions revealed a single network with six miRNAs modulating genes involved in lipogenesis and lipid metabolism. The statin-dysregulated miRNAs were predicted to target genes involved in cellular development and differentiation, regulation of metabolic process and expression of genes involved in inflammation, and lipid metabolism disorders contributing to metabolic and liver diseases. CONCLUSIONS: Atorvastatin-mediated miR-129, miR-143, miR-205, miR-381, and miR-495 upregulation, and miR-29b, and miR-33a downregulation, modulate the expression of target genes involved in lipogenesis and lipid metabolism. Thus, statins may prevent hepatic lipid accumulation and ameliorate dyslipidemia.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Anticolesterolemiantes/farmacologia , Atorvastatina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células Hep G2 , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Fígado/efeitos dos fármacos , RNA Mensageiro/genética , Sinvastatina/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Forensic Sci Int Genet ; 52: 102478, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33588347

RESUMO

Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) and is one of the major causes of sudden cardiac death (SCD). An exon-targeted gene sequencing strategy was used to investigate the association of functional variants in sarcomeric genes (MYBPC3, MYH7 and TNNT2) with severe LVH and other SCD-related risk factors in Brazilian HCM patients. Clinical data of 55 HCM patients attending a Cardiology Hospital (Sao Paulo city, Brazil) were recorded. Severe LVH, aborted SCD, family history of SCD, syncope, non-sustained ventricular tachycardia and abnormal blood pressure in response to exercise were evaluated as SCD risk factors. Blood samples were obtained for genomic DNA extraction and the exons and untranslated regions of the MYH7, MYBPC3 and TNNT2 were sequenced using Nextera® and MiSEq® reagents. Variants were identified and annotated using in silico tools, and further classified as pathogenic or benign according to the American College of Medical Genetics and Genomics guidelines. Variants with functional effects were identified in MYBPC3 (n = 9), MYH7 (n = 6) and TNNT2 (n = 4). The benign variants MYBPC3 p.Val158Met and TNNT2 p.Lys263Arg were associated with severe LVH (p < 0.05), and the MYH7 p.Val320Met (pathogenic) was associated with family history of SCD (p = 0.037). Increased risk for severe LVH was found in carriers of MYBPC3 Met158 (c.472 A allele, OR = 13.5, 95% CI = 1.80-101.12, p = 0.011) or combined variants (MYBPC3, MYH7 and TNNT2: OR = 12.39, 95% CI = 2.14-60.39, p = 0.004). Carriers of TNNT2 p.Lys263Arg and combined variants had higher values of septum thickness than non-carriers (p < 0.05). Molecular modeling analysis showed that MYBPC3 158Met reduces the interaction of cardiac myosin-binding protein C (cMyBP-C) RASK domain (amino acids Arg215-Ala216-Ser217-Lys218) with tropomyosin. In conclusion, the variants MYBPC3 p.Val158Met, TNNT2 p.Lys263Arg and MYH7 p.Val320Met individually or combined contribute to the risk of sudden cardiac death and other outcomes of hypertrophic cardiomyopathy.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Mutação , Cadeias Pesadas de Miosina/genética , Troponina T/genética , Brasil , Morte Súbita Cardíaca/etiologia , Ecocardiografia , Feminino , Estudos de Associação Genética , Septos Cardíacos/diagnóstico por imagem , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Análise de Sequência de DNA
18.
Ann Transl Med ; 9(1): 76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553369

RESUMO

Statins are the most widely used cholesterol-lowering drugs for cardiovascular diseases prevention. However, some patients are refractory to treatment, whereas others experience statin-related adverse events (SRAE). It has been increasingly important to identify pharmacogenetic biomarkers for predicting statin response and adverse events. This case report describes a female patient with familial hypercholesterolemia (FH) who showed late response to rosuvastatin and experienced myalgia on statin treatment. In the first visit (V1), the patient reported myalgia to rosuvastatin 40 mg, which was interrupted for a 6-week wash-out period. In V2, rosuvastatin 20 mg was reintroduced, but her lipid profile did not show any changes after 6 weeks (V3) (LDL-c: 402 vs. 407 mg/dL). Her lipid profile markedly improved after 12 weeks of treatment (V4) (LDL-c: 208 mg/dL), suggesting a late rosuvastatin response. Her adherence to treatment was similar in V1 and V3 and no drug interactions were detected. Pharmacogenetic analysis revealed that the patient carries low-activity variants in SLCO1B1*1B and*5, SLCO1B3 (rs4149117 and rs7311358), and ABCB11 rs2287622, and the non-functional variant in CYP3A5*3. The combined effect of variants in pharmacokinetics-related genes may have contributed to the late response to rosuvastatin and statin-related myalgia. Therefore, they should be considered when assessing a patient's response to statin treatment. To the best of our knowledge, this is the first report of a pharmacogenetic analysis on a case of late rosuvastatin response.

19.
Res Social Adm Pharm ; 17(7): 1347-1355, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33129683

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a genetic disease that affects millions of people worldwide. OBJECTIVES: The study protocol FHBGEP was design to investigate the main genomic, epigenomic, and pharmacogenomic factors associated with FH and polygenic hypercholesterolemia (PH). METHODS: FH patients will be enrolled at six research centers in Brazil. An exon-targeted gene strategy will be used to sequence a panel of 84 genes related to FH, PH, pharmacogenomics and coronary artery disease. Variants in coding and regulatory regions will be identified using a proposed variant discovery pipeline and classified according to the American College Medical Genetics guidelines. Functional effects of variants in FH-related genes will be investigated by in vitro studies using lymphocytes and cell lines (HepG2, HUVEC and HEK293FT), CRISPR/Cas9 mutagenesis, luciferase reporter assay and other technologies. Functional studies in silico, such as molecular docking, molecular dynamics, and conformational analysis, will be used to explore the impact of novel variants on protein structure and function. DNA methylation profile and differential expression of circulating non-coding RNAs (miRNAs and lncRNAs) will be analyzed in FH patients and normolipidemic subjects (control group). The influence of genomic and epigenomic factors on metabolic and inflammatory status will be analyzed in FH patients. Pharmacogenomic studies will be conducted to investigate the influence of genomic and epigenomic factors on response to statins in FH patients. SUMMARY: The FHBGEP protocol has the potential to elucidate the genetic basis and molecular mechanisms involved in the pathophysiology of FH and PH, particularly in the Brazilian population. This pioneering approach includes genomic, epigenomic and functional studies, which results will contribute to the improvement of the diagnosis, prognosis and personalized therapy of FH patients.


Assuntos
Hiperlipoproteinemia Tipo II , Brasil , Epigenômica , Genômica , Humanos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Simulação de Acoplamento Molecular , Farmacogenética
20.
Brain Res ; 1730: 146646, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917138

RESUMO

Primary central nervous system (CNS) tumors are the most common deadly childhood cancer. Several patients with medulloblastoma experience local or metastatic recurrences after standard treatment, a condition associated with very poor prognosis. Current neuroimaging techniques do not accurately detect residual stem-like medulloblastoma cells promoting tumor relapses. In attempt to identify candidate tumor markers that could be circulating in blood or cerebrospinal (CSF) fluid of patients, we evaluated the proteome and miRNome content of extracellular microvesicles (MVs) released by highly-aggressive stem-like medulloblastoma cells overexpressing the pluripotent factor OCT4A. These cells display enhanced tumor initiating capability and resistance to chemotherapeutic agents. A common set of 464 proteins and 10 microRNAs were exclusively detected in MVs of OCT4A-overexpressing cells from four distinct medulloblastoma cell lines, DAOY, CHLA-01-MED, D283-MED, and USP13-MED. The interactome mapping of these exclusive proteins and miRNAs revealed ERK, PI3K/AKT/mTOR, EGF/EGFR, and stem cell self-renewal as the main oncogenic signaling pathways altered in these aggressive medulloblastoma cells. Of these MV cargos, four proteins (UBE2M, HNRNPCL2, HNRNPCL3, HNRNPCL4) and five miRNAs (miR-4449, miR-500b, miR-3648, miR-1291, miR-3607) have not been previously reported in MVs from normal tissues and in CSF. These proteins and miRNAs carried within MVs might serve as biomarkers of aggressive stem-like medulloblastoma cells to improve clinical benefit by helping refining diagnosis, patient stratification, and early detection of relapsed disease.


Assuntos
Neoplasias Cerebelares/diagnóstico , Vesículas Extracelulares/metabolismo , Meduloblastoma/diagnóstico , MicroRNAs/análise , Proteoma/análise , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/líquido cefalorraquidiano , Linhagem Celular Tumoral , Neoplasias Cerebelares/sangue , Neoplasias Cerebelares/líquido cefalorraquidiano , Humanos , Meduloblastoma/sangue , Meduloblastoma/líquido cefalorraquidiano , Prognóstico , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa