Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991655

RESUMO

One of the major challenges associated with e-textiles is the connection between flexible fabric-integrated wires and rigid electronics. This work aims to increase the user experience and mechanical reliability of these connections by foregoing conventional galvanic connections in favor of inductively coupled coils. The new design allows for some movement between the electronics and the wires, and it relieves the mechanical strain. Two pairs of coupled coils continuously transmit power and bidirectional data across two air gaps of a few millimeters. A detailed analysis of this double inductive link and associated compensation network is presented, and the sensitivity of the network to changing conditions is explored. A proof of principle is built that demonstrates the system's ability to self-tune based on the current-voltage phase relation. A demonstration combining 8.5 kbit/s of data transfer with a power output of 62 mW DC is presented, and the hardware is shown to support data rates of up to 240 kbit/s. This is a significant improvement of the performance of previously presented designs.

2.
Anal Chem ; 94(18): 6893-6901, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35486709

RESUMO

Sweat sensors allow for new unobtrusive ways to continuously monitor an athlete's performance and health status. Significant advances have been made in the optimization of sensitivity, selectivity, and durability of electrochemical sweat sensors. However, comparing the in situ performance of these sensors in detail remains challenging because standardized sweat measurement methods to validate sweat sensors in a physiological setting do not yet exist. Current collection methods, such as the absorbent patch technique, are prone to contamination and are labor-intensive, which limits the number of samples that can be collected over time for offline reference measurements. We present an easy-to-fabricate sweat collection system that allows for continuous electrochemical monitoring, as well as chronological sampling of sweat for offline analysis. The patch consists of an analysis chamber hosting a conductivity sensor and a sequence of 5 to 10 reservoirs that contain level indicators that monitor the filling speed. After testing the performance of the patch in the laboratory, elaborate physiological validation experiments (3 patch locations, 6 participants) were executed. The continuous sweat conductivity measurements were compared with laboratory [Na+] and [Cl-] measurements of the samples, and a strong linear relationship (R2 = 0.97) was found. Furthermore, sweat rate derived from ventilated capsule measurement at the three locations was compared with patch filling speed and continuous conductivity readings. As expected from the literature, sweat conductivity was linearly related to sweat rate as well. In short, a successfully validated sweat collection patch is presented that enables sensor developers to systematically validate novel sweat sensors in a physiological setting.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Íons/análise , Monitorização Fisiológica , Suor/química , Sudorese
3.
Sensors (Basel) ; 19(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791657

RESUMO

Capacitors made of interdigitated electrodes (IDEs) as a transducer platform for the sensing of volatile organic compounds (VOCs) have advantages due to their lower power operation and fabrication using standard micro-fabrication techniques. Integrating a micro-electromechanical system (MEMS), such as a microhotplate with IDE capacitor, further allows study of the temperature- dependent sensing response of VOCs. In this paper, the design, fabrication, and characterization of a low-power MEMS microhotplate with IDE capacitor to study the temperature-dependent sensing response to methanol using Zeolitic imidazolate framework (ZIF-8), a class of metal-organic framework (MOF), is presented. A Titanium nitride (TiN) microhotplate with aluminum IDEs suspended on a silicon nitride membrane is fabricated and characterized. The power consumption of the ZIF-8 MOF-coated device at an operating temperature of 50 ∘ C is 4.5 mW and at 200 ∘ C it is 26 mW. A calibration methodology for the effects of temperature of the isolation layer between the microhotplate electrodes and the capacitor IDEs is developed. The device coated with ZIF-8 MOF shows a response to methanol in the concentration range of 500 ppm to 7000 ppm. The detection limit of the sensor for methanol vapor at 20 ∘ C is 100 ppm. In situ study of sensing properties of ZIF-8 MOF to methanol in the temperature range from 20 ∘ C to 50 ∘ C using the integrated microhotplate and IDE capacitor is presented. The kinetics of temperature-dependent adsorption and desorption of methanol by ZIF-8 MOF are fitted with double-exponential models. With the increase in temperature from 20 ∘ C to 50 ∘ C, the response time for sensing of methanol vapor concentration of 5000 ppm decreases by 28%, whereas the recovery time decreases by 70%.

4.
Small ; 13(29)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593743

RESUMO

The in situ electrochemical growth of Cu benzene-1,3,5-tricarboxylate (CuBTC) metal-organic frameworks, as an affinity layer, directly on custom-fabricated Cu interdigitated electrodes (IDEs) is described, acting as a transducer. Crystalline 5-7 µm thick CuBTC layers are grown on IDEs consisting of 100 electrodes with a width and a gap of both 50 µm and a height of 6-8 µm. These capacitive sensors are exposed to methanol and water vapor at 30 °C. The affinities show to be completely reversible with higher affinity toward water compared to methanol. For exposure to 1000 ppm methanol, a fast response is observed with a capacitance change of 5.57 pF at equilibrium. The capacitance increases in time followed diffusion-controlled kinetics (k = 2.9 mmol s-0.5 g-1CuBTC ). The observed capacitance change with methanol concentration follows a Langmuir adsorption isotherm, with a value for the equilibrium affinity Ke = 174.8 bar-1 . A volume fraction fMeOH = 0.038 is occupied upon exposure to 1000 ppm of methanol. The thin CuBTC affinity layer on the Cu-IDEs shows fast, reversible, and sensitive responses to methanol and water vapor, enabling quantitative detection in the range of 100-8000 ppm.

5.
Wearable Technol ; 2: e17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38486627

RESUMO

This article presents a novel smart sensor garment with integrated miniaturized inertial measurements units (IMUs) that can be used to monitor lower body kinematics during daily training activities, without the need of extensive technical assistance throughout the measurements. The smart sensor tights enclose five ultra-light sensor modules that measure linear accelerations, angular velocities, and the earth magnetic field in three directions. The modules are located at the pelvis, thighs, and shanks. The garment enables continuous measurement in the field at high sample rates (250 Hz) and the sensors have a large measurement range (32 g, 4,000°/s). They are read out by a central processing unit through an SPI bus, and connected to a centralized battery in the waistband. A fully functioning prototype was built to perform validation studies in a lab setting and in a field setting. In the lab validation study, the IMU data (converted to limb orientation data) were compared with the kinematic data of an optoelectronic measurement system and good validity (CMCs >0.8) was shown. In the field tests, participants experienced the tights as comfortable to wear and they did not feel restricted in their movements. These results show the potential of using the smart sensor tights on a regular base to derive lower limb kinematics in the field.

6.
Anal Methods ; 12(48): 5885-5892, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33290448

RESUMO

This paper presents a method to continuously collect and reliably measure sweat analyte concentrations during exercise. The method can be used to validate newly developed sweat sensors and to obtain insight into intraindividual variations of sweat analytes in athletes. First, a novel design of a sweat collection system is created. The sweat collection patch, that is made from hydrophilized foil and a double-sided acrylate adhesive, consists of a reservoir array that collects samples consecutively in time. During a physiological experiment, sweat can be collected from the back of a participant and the filling speed of the collector is monitored by using a camera. After the experiment, Na+, Cl- and K+ levels are measured with ion chromatography. Sweat analyte variations are measured during exercise for an hour at three different locations on the back. The Na+ and Cl- variations show a similar trend and the absolute concentrations vary with the patch location. Na+ and Cl- concentrations increase and K+ concentrations seem to decrease during this exercise. With this new sweat collection system, sweat Na+, Cl- and K+ concentrations can be collected over time during exercise at medium to high intensity, to analyse the trend in electrolyte variations per individual.


Assuntos
Suor , Dispositivos Eletrônicos Vestíveis , Cromatografia , Eletrólitos , Humanos , Sudorese
7.
Lab Chip ; 5(10): 1067-74, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16175262

RESUMO

In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.


Assuntos
Eletroquímica/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Nanotecnologia/métodos , Simulação por Computador , Difusão , Microfluídica , Microscopia de Fluorescência , Modelos Estatísticos , Modelos Teóricos , Osmose , Distribuição de Poisson , Eletricidade Estática , Propriedades de Superfície , Fatores de Tempo
8.
Biotechnol Adv ; 21(5): 431-44, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14499125

RESUMO

Biotechnology today is a well-established paradigm in many areas of human endeavor, such as the pharmaceutical industry, agriculture, management of the environment and many others. Meanwhile, biology is undergoing a spectacular transition: whereas systematic biology was replaced gradually by molecular biology, the latter is rapidly being transformed into a new systematic era in which entire genomes are being charted by ever more sophisticated analytical techniques. In the wake of this onslaught of data, new fields are germinating, such as bioinformatics in an attempt to find answers to fundamental questions, answers that may be hidden in the massive amounts of data already available today.


Assuntos
Enzimas/análise , Microquímica/instrumentação , Microquímica/métodos , Miniaturização/instrumentação , Miniaturização/métodos , Transdutores , Biopolímeros/análise , Biopolímeros/metabolismo , Biotecnologia/instrumentação , Biotecnologia/métodos , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Enzimas/metabolismo , Desenho de Equipamento , Análise de Injeção de Fluxo/instrumentação , Análise de Injeção de Fluxo/métodos
9.
Biomicrofluidics ; 2(2): 24103, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19693406

RESUMO

In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use lambda (48.5 kbp) and T4GT7 (165.6 kbp) DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of 0.4 mum. Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical mechanism for the DNA polarization and dielectrophoresis inside confining channels, based on the observed dielectrophoresis responses due to different DNA sizes and various electric fields applied between the inlet and the outlet. The proposed physical mechanism indicates that further extensive investigations, both theoretically and experimentally, would be very useful to better elucidate the forces involved at DNA dielectrophoresis. When applied for size-based sorting of DNA molecules, our sorting method offers two major advantages compared to earlier attempts with insulative dielectrophoresis: Its continuous operation allows for high-throughput analysis, and it only requires electric field strengths as low as approximately 10 Vcm.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa