Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047034

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease; however, no specific pharmacological therapy has yet been approved for this condition. Plant-derived extracts can be an important source for the development of new drugs. The aim of this study was to investigate the effects of (E)-ß-caryophyllene (BCP), a phytocannabinoid recently found to be beneficial against metabolic diseases, on HepG2 steatotic hepatocytes. Using a fluorescence-based lipid quantification assay and GC-MS analysis, we show that BCP is able to decrease lipid accumulation in steatotic conditions and to change the typical steatotic lipid profile by primarily reducing saturated fatty acids. By employing specific antagonists, we demonstrate that BCP action is mediated by multiple receptors: CB2 cannabinoid receptor, peroxisome proliferator-activated receptor α (PPARα) and γ (PPARγ). Interestingly, BCP was able to counteract the increase in CB2 and the reduction in PPARα receptor expression observed in steatotic conditions. Moreover, through immunofluorescence and confocal microscopy, we demonstrate that CB2 receptors are mainly intracellularly localized and that BCP is internalized in HepG2 cells with a maximum peak at 2 h, suggesting a direct interaction with intracellular receptors. The results obtained with BCP in normal and steatotic hepatocytes encourage future applications in the treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sesquiterpenos , Humanos , Lipídeos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/metabolismo , PPAR gama/metabolismo , Sesquiterpenos/farmacologia , Receptor CB2 de Canabinoide
2.
Microb Cell Fact ; 21(1): 117, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710482

RESUMO

BACKGROUND: Astaxanthin is a ketocarotenoid with high antioxidant power used in different fields as healthcare, food/feed supplementation and as pigmenting agent in aquaculture. Primary producers of astaxanthin are some species of microalgae, unicellular photosynthetic organisms, as Haematococcus lacustris. Astaxanthin production by cultivation of Haematococcus lacustris is costly due to low biomass productivity, high risk of contamination and the requirement of downstream extraction processes, causing an extremely high price on the market. Some microalgae species are also primary producers of omega-3 fatty acids, essential nutrients for humans, being related to cardiovascular wellness, and required for visual and cognitive development. One of the main well-known producers of omega-3 fatty eicosapentaenoic acid (EPA) is the marine microalga Nannochloropsis gaditana (named also Microchloropsis gaditana): this species has been already approved by the Food and Drug Administration (FDA) for human consumption and it is characterized by a fast grow phenotype. RESULTS: Here we obtained by chemical mutagenesis a Nannochloropsis gaditana mutant strain, called S4, characterized by increased carotenoid to chlorophyll ratio. S4 strain showed improved photosynthetic activity, increased lipid productivity and increased ketocarotenoids accumulation, producing not only canthaxanthin but also astaxanthin, usually found only in traces in the WT strain. Ketocarotenoids produced in S4 strain were extractible in different organic solvents, with the highest efficiency observed upon microwaves pre-treatment followed by methanol extraction. By cultivation of S4 strain at different irradiances it was possible to produce up to 1.3 and 5.2 mgL-1 day-1 of ketocarotenoids and EPA respectively, in a single cultivation phase, even in absence of stressing conditions. Genome sequencing of S4 strain allowed to identify 199 single nucleotide polymorphisms (SNP): among the mutated genes, mutations in a carotenoid oxygenase gene and in a glutamate synthase gene could explain the different carotenoids content and the lower chlorophylls content, respectively. CONCLUSIONS: By chemical mutagenesis and selection of strain with increased carotenoids to chlorophyll ratio it was possible to isolate a new Nannochloropsis gaditana strain, called S4 strain, characterized by increased lipids and ketocarotenoids accumulation. S4 strain can thus be considered as novel platform for ketocarotenoids and EPA production for different industrial applications.


Assuntos
Microalgas , Estramenópilas , Carotenoides/química , Clorofila , Ácido Eicosapentaenoico , Microalgas/química , Microalgas/genética , Estramenópilas/genética , Xantofilas
3.
Neurobiol Dis ; 129: 79-92, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31102766

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease due to motor neuron (MN) loss. The mechanisms causing selective MN death are largely unknown, thus prejudicing successful pharmacological treatments. Major causes of MN damage are effects downstream of the abnormal glutamate (Glu) neurotransmission. Group I metabotropic Glu receptors (mGluR1, mGluR5) actively contribute to the excitotoxicity in ALS and represent druggable molecular targets. We previously demonstrated that halving mGluR1 or mGluR5 expression in the widely studied SOD1G93A mouse model of ALS had a positive impact on disease onset, clinical progression and survival, as well as on cellular and biochemical parameters altered in ALS. Whereas these effects were similar in female and male mGluR1 heterozygous SOD1G93Amice, only male mGluR5 heterozygous SOD1G93A mice showed improved motor skills during disease progression. To further validate the role of Group I mGluRs in ALS, we generated in this study mGluR1 or mGluR5 null mice expressing the SOD1G93A mutation (SOD1G93AGrm1crv4/crv4 or SOD1G93AGrm5-/-, respectively). SOD1G93AGrm1crv4/crv4 mice showed early and progressive motor impairments and died even before SOD1G93A mice, while SOD1G93AGrm5-/- mice exhibited delayed disease onset, longer survival, and ameliorated motor skills than SOD1G93A mice. No difference between female and male SOD1G93AGrm5-/- mice were observed. These effects were associated with enhanced MN preservation and decreased astrocytic and microglial activation. Our results strongly support the assumption that constitutively lowering of mGluR5 expression has a positive impact in mice with ALS by counteracting the abnormal Glu transmission and this could be a potentially effective pharmacological target in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Receptor de Glutamato Metabotrópico 5/deficiência , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética
4.
Neurobiol Dis ; 109(Pt A): 44-53, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28982591

RESUMO

Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1crv4/crv4) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1crv4 and Grm5ko mice to generate double mutants (Grm1crv4/crv4Grm5ko/ko) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Atividade Motora , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Glutamato Metabotrópico/genética , Animais , Autorreceptores/metabolismo , Cerebelo/metabolismo , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Subunidades Proteicas , Receptores de AMPA/metabolismo , Teste de Desempenho do Rota-Rod
5.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217050

RESUMO

Following herbivore attacks, plants modify a blend of volatiles organic compounds (VOCs) released, resulting in the attraction of their antagonists. However, volatiles released constitutively may affect herbivores and natural enemies' fitness too. In tomato there is still a lack of information on the genetic bases responsible for the constitutive release of VOC involved in direct and indirect defenses. Here we studied the constitutive emissions related to the two most abundant sesquiterpene synthase genes expressed in tomato and their functional role in plant defense. Using an RNA interference approach, we silenced the expression of TPS9 and TPS12 genes and assessed the effect of this transformation on herbivores and parasitoids. We found that silenced plants displayed a different constitutive volatiles emission from controls, resulting in reduced attractiveness for the aphid parasitoid Aphidius ervi and in an impaired development of Spodoptera exigua larvae. We discussed these data considering the transcriptional regulation of key-genes involved in the pathway of VOC metabolism. We provide several lines of evidence on the metabolic flux from terpenoids to phenylpropanoids. Our results shed more light on constitutive defenses mediated by plant volatiles and on the molecular mechanisms involved in their metabolic regulation.


Assuntos
Herbivoria/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Animais , Afídeos/fisiologia , Interações Hospedeiro-Parasita , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia
6.
BMC Med Genet ; 17(1): 89, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884122

RESUMO

BACKGROUND: Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. METHODS: To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. RESULTS: Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. CONCLUSIONS: A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS in a multifactorial mode of inheritance.


Assuntos
Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA , Redes Reguladoras de Genes , Cariotipagem/métodos , Síndrome de Poland/genética , Duplicação Cromossômica , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Deleção de Sequência
7.
Prog Neurobiol ; 233: 102568, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216113

RESUMO

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.


Assuntos
Disfunção Cognitiva , Regulação da Expressão Gênica , Animais , Humanos , Camundongos , Sequência de Aminoácidos , Neurogênese/genética , Plasticidade Neuronal/genética , Proteínas/genética , Proteínas/metabolismo
8.
Mol Plant Microbe Interact ; 26(10): 1249-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23718124

RESUMO

Below ground and above ground plant-insect-microorganism interactions are complex and regulate most of the developmental responses of important crop plants such as tomato. We investigated the influence of root colonization by a nonmycorrhizal plant-growth-promoting fungus on direct and indirect defenses of tomato plant against aphids. The multitrophic system included the plant Solanum lycopersicum ('San Marzano nano'), the root-associated biocontrol fungus Trichoderma longibrachiatum strain MK1, the aphid Macrosiphum euphorbiae (a tomato pest), the aphid parasitoid Aphidius ervi, and the aphid predator Macrolophus pygmaeus. Laboratory bioassays were performed to assess the effect of T. longibrachiatum MK1, interacting with the tomato plant, on quantity and quality of volatile organic compounds (VOC) released by tomato plant, aphid development and reproduction, parasitoid behavior, and predator behavior and development. When compared with the uncolonized controls, plants whose roots were colonized by T. longibrachiatum MK1 showed quantitative differences in the release of specific VOC, better aphid population growth indices, a higher attractiveness toward the aphid parasitoid and the aphid predator, and a quicker development of aphid predator. These findings support the development of novel strategies of integrated control of aphid pests. The species-specific or strain-specific characteristics of these below ground-above ground interactions remain to be assessed.


Assuntos
Afídeos/fisiologia , Himenópteros/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Trichoderma/fisiologia , Animais , Interações Hospedeiro-Patógeno , Solanum lycopersicum/química , Solanum lycopersicum/parasitologia , Doenças das Plantas/parasitologia , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Especificidade da Espécie , Compostos Orgânicos Voláteis/metabolismo
9.
Antioxidants (Basel) ; 12(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978848

RESUMO

Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.

10.
FEBS J ; 290(10): 2673-2691, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36595342

RESUMO

Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy-dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish 'white' and 'brown' adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice. By contrast, Bsg expression increased in the mature adipocyte fraction of BAT upon cold acclimation. Additionally, Bsg levels were highly induced during brown adipocyte maturation in vitro and were further increased upon ß-adrenergic stimulation in a HIF-1α-dependent manner. siRNA-mediated Bsg gene silencing in cultured brown adipocytes did not impact adipogenesis nor mitochondrial function. However, a significant decrease in mitochondrial respiration, lipolysis and Ucp1 transcription was observed in adipocytes lacking Bsg, when activated by norepinephrine. Furthermore, using gas chromatography/mass spectrometry-time-of-flight analysis to assess the composition of cellular metabolites, we demonstrate that brown adipocytes lacking Bsg have lower levels of intracellular lactate and acetoacetate. Bsg was additionally required to regulate intracellular AcAc and tricarboxylic acid cycle intermediate levels in NE-stimulated adipocytes. Our study highlights the critical role of Bsg in active brown adipocytes, possibly by controlling cellular metabolism.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Camundongos , Animais , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Basigina/metabolismo , Lipólise , Obesidade/metabolismo , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
11.
Res Sq ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909584

RESUMO

The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex in animals that can alter the topology of both DNA and RNA. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impairments in cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal shorten-memory and learning, and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we built a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive impairment and psychiatric disorders.

12.
J Biotechnol ; 357: 28-37, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35931238

RESUMO

Oleaginous microalgae represent potential feedstocks for the sustainable production of lipids thanks to their ability to accumulate triacylglycerols (TAGs). TAG accumulation in several algal species is strongly induced under specific conditions such as nutrient deprivation and high light which, however, also negatively impact growth. Genetic modification of lipogenic pathways can potentially enhance TAG accumulation without negatively affecting growth, avoiding the trade-off between biomass and lipid productivity. In this study, the phospholipid: diacylglycerol acyltransferase (PDAT), an enzyme involved in membrane lipid recycling, was overexpressed in the seawater alga Nannochloropsis gaditana. PDAT overexpression induced increased TAG content in actively growing algae cultures while no effects were observed in conditions naturally stimulating strong lipid accumulation such as high light and nitrogen starvation. The increase of TAG content was confirmed also in a strain cultivated in industrially relevant conditions even though PDAT overexpression, if too strong, the gene overexpression becomes detrimental for growth in the longer term. Results overall suggest that genetic modulation of the PDAT gene represents a promising strategy to increase microalgae lipid content by minimizing negative effects on biomass productivity.


Assuntos
Microalgas , Estramenópilas , Lipídeos de Membrana/metabolismo , Microalgas/genética , Microalgas/metabolismo , Nitrogênio/metabolismo , Plantas/metabolismo , Estramenópilas/genética , Estramenópilas/metabolismo , Triglicerídeos/metabolismo
13.
BMC Plant Biol ; 10: 97, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20504319

RESUMO

BACKGROUND: Plant Ca2+ signals are involved in a wide array of intracellular signaling pathways after pest invasion. Ca2+-binding sensory proteins such as Ca2+-dependent protein kinases (CPKs) have been predicted to mediate the signaling following Ca2+ influx after insect herbivory. However, until now this prediction was not testable. RESULTS: To investigate the roles CPKs play in a herbivore response-signaling pathway, we screened the characteristics of Arabidopsis CPK mutants damaged by a feeding generalist herbivore, Spodoptera littoralis. Following insect attack, the cpk3 and cpk13 mutants showed lower transcript levels of plant defensin gene PDF1.2 compared to wild-type plants. The CPK cascade was not directly linked to the herbivory-induced signaling pathways that were mediated by defense-related phytohormones such as jasmonic acid and ethylene. CPK3 was also suggested to be involved in a negative feedback regulation of the cytosolic Ca2+ levels after herbivory and wounding damage. In vitro kinase assays of CPK3 protein with a suite of substrates demonstrated that the protein phosphorylates transcription factors (including ERF1, HsfB2a and CZF1/ZFAR1) in the presence of Ca2+. CPK13 strongly phosphorylated only HsfB2a, irrespective of the presence of Ca2+. Furthermore, in vivo agroinfiltration assays showed that CPK3-or CPK13-derived phosphorylation of a heat shock factor (HsfB2a) promotes PDF1.2 transcriptional activation in the defense response. CONCLUSIONS: These results reveal the involvement of two Arabidopsis CPKs (CPK3 and CPK13) in the herbivory-induced signaling network via HsfB2a-mediated regulation of the defense-related transcriptional machinery. This cascade is not involved in the phytohormone-related signaling pathways, but rather directly impacts transcription factors for defense responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sinalização do Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Spodoptera , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Ciclopentanos/metabolismo , Citosol/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Oxilipinas/metabolismo , Fosforilação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
14.
New Phytol ; 187(4): 1089-1101, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20546139

RESUMO

*An integrated approach has been used to obtain an understanding of the molecular and chemical mechanisms underlying resistance to aphids in cherry-like tomato (Solanum lycopersicum) landraces from the Campania region (southern Italy). The aphid-parasitoid system Macrosiphum euphorbiae-Aphidius ervi was used to describe the levels of resistance against aphids in two tomato accessions (AN5, AN7) exhibiting high yield and quality traits and lacking the tomato Mi gene. *Aphid development and reproduction, flight response by the aphid parasitoid A. ervi, gas chromatography-mass spectrometry headspace analysis of plant volatile organic compounds and transcriptional analysis of aphid responsive genes were performed on selected tomato accessions and on a susceptible commercial variety (M82). *When compared with the cultivated variety, M82, AN5 and AN7 showed a significant reduction of M. euphorbiae fitness, the release of larger amounts of specific volatile organic compounds that are attractive to the aphid parasitoid A. ervi, a constitutively higher level of expression of plant defence genes and differential enhancement of plant indirect resistance induced by aphid feeding. *These results provide new insights on how local selection can offer the possibility of the development of innovative genetic strategies to increase tomato resistance against aphids.


Assuntos
Afídeos , Expressão Gênica , Genes de Plantas , Interações Hospedeiro-Parasita/genética , Doenças das Plantas , Imunidade Vegetal/genética , Solanum lycopersicum/genética , Animais , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Compostos Orgânicos Voláteis/metabolismo
15.
Nat Commun ; 11(1): 3143, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561719

RESUMO

Topoisomerase 3ß (Top3ß) is the only dual-activity topoisomerase in animals that can change topology for both DNA and RNA, and facilitate transcription on DNA and translation on mRNAs. Top3ß mutations have been linked to schizophrenia, autism, epilepsy, and cognitive impairment. Here we show that Top3ß knockout mice exhibit behavioural phenotypes related to psychiatric disorders and cognitive impairment. The mice also display impairments in hippocampal neurogenesis and synaptic plasticity. Notably, the brains of the mutant mice exhibit impaired global neuronal activity-dependent transcription in response to fear conditioning stress, and the affected genes include many with known neuronal functions. Our data suggest that Top3ß is essential for normal brain function, and that defective neuronal activity-dependent transcription may be a mechanism by which Top3ß deletion causes cognitive impairment and psychiatric disorders.


Assuntos
Disfunção Cognitiva/genética , DNA Topoisomerases Tipo I/genética , Transtornos Mentais/genética , Neurogênese/genética , Plasticidade Neuronal/genética , Animais , Técnicas de Observação do Comportamento , Comportamento Animal , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Feminino , Hipocampo/citologia , Hipocampo/diagnóstico por imagem , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Mentais/diagnóstico , Transtornos Mentais/patologia , Camundongos , Camundongos Knockout , Neurônios/patologia , Técnicas Estereotáxicas , Potenciais Sinápticos/genética , Transcrição Gênica/fisiologia
16.
Environ Microbiol ; 11(4): 844-54, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19396945

RESUMO

Fusarium oxysporum MSA35 [wild-type (WT) strain] is an antagonistic Fusarium that lives in association with a consortium of bacteria belonging to the genera Serratia, Achromobacter, Bacillus and Stenotrophomonas in an Italian soil suppressive to Fusarium wilt. Typing experiments and virulence tests provided evidence that the F. oxysporum isolate when cured of the bacterial symbionts [the cured (CU) form], is pathogenic, causing wilt symptoms identical to those caused by F. oxysporum f. sp. lactucae. Here, we demonstrate that small volatile organic compounds (VOCs) emitted from the WT strain negatively influence the mycelial growth of different formae speciales of F. oxysporum. Furthermore, these VOCs repress gene expression of two putative virulence genes in F. oxysporum lactucae strain Fuslat10, a fungus against which the WT strain MSA 35 has antagonistic activity. The VOC profile of the WT and CU fungus shows different compositions. Sesquiterpenes, mainly caryophyllene, were present in the headspace only of WT MSA 35. No sesquiterpenes were found in the volatiles of ectosymbiotic Serratia sp. strain DM1 and Achromobacter sp. strain MM1. Bacterial volatiles had no effects on the growth of the different ff. spp. of F. oxysporum examined. Hyphae grownwithVOCfrom WT F. oxysporum f. sp. lactucae strain MSA 35 were hydrophobic whereas those grown without VOCs were not, suggesting a correlation between the presence of volatiles in the atmosphere and the phenotype of the mycelium. This is the first report of VOC production by antagonistic F. oxysporum MSA35 and their effects on pathogenic F. oxysporum. The results obtained in this work led us to propose a new potential direct long-distance mechanism for antagonism by F. oxysporum MSA 35 mediated by VOCs. Antagonism could be the consequence of both reduction of pathogen mycelial growth and inhibition of pathogen virulence gene expression.


Assuntos
Antibiose , Fusarium/metabolismo , Fusarium/fisiologia , Microbiologia do Solo , Compostos Orgânicos Voláteis/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Itália , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Fatores de Virulência/biossíntese
17.
Eur J Med Genet ; 62(9): 103555, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30359776

RESUMO

The KCNQ5 gene, widely expressed in the brain, encodes a voltage-gated potassium channel (Kv7.5) important for neuronal function. Here, we report a novel KCNQ5 intragenic duplication at 6q13 spanning about 239 Kb of genomic DNA, identified by array comparative genomic hybridization (array-CGH). The duplication was found in heterozygosity in an adult patient affected by mild intellectual disability with history of absence epilepsy in adolescence, with no EEG nor MRI alterations. By in vitro analyses we demonstrated that this copy number variation (CNV) led to an aberrant transcript with exon 2-11 skipping and a premature stop codon causing, most likely, haploinsufficiency. The Kv7.5 channel plays an important role in the regulation of M-type current and afterhyperpolarization conductances which contribute to neuronal excitability. A recently published paper described KCNQ5 missense mutations in individuals with intellectual disability and treatment-resistant epilepsy that were thought to act through either loss-of-function or gain-of-function mechanisms, associated in both cases with altered neuronal excitability. In the case reported here, we showed that no functional protein can be produced from the allele involved by the intragenic duplication. This evidence strongly supports the hypothesis of KCNQ5 haploinsufficiency, which could lead to altered neuronal excitability, thus contributing to seizure susceptibility and intellectual disability.


Assuntos
Duplicação Gênica , Deficiência Intelectual/genética , Canais de Potássio KCNQ/genética , Mutação com Perda de Função , Códon de Terminação , Feminino , Humanos , Deficiência Intelectual/patologia , Splicing de RNA , Adulto Jovem
18.
Front Mol Neurosci ; 11: 324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279647

RESUMO

Mouse cortical GABAergic synaptosomes possess presynaptic inhibitory GABAB autoreceptors. Accordingly, (±)baclofen (3 µM) inhibits in a CGP53423-sensitive manner the 12 mM KCl-evoked release of preloaded [3H]GABA. Differently, the existence of presynaptic release-regulating metabotropic glutamate type 1 (mGlu1) heteroreceptors in these terminals is still matter of discussion, although confocal microscopy unveiled the existence of mGlu1α with GABAB1 or GABAB2 proteins in cortical VGAT-positive synaptosomes. The group I mGlu agonist 3,5-DHPG failed to modify on its own the 12 mM KCl-evoked [3H]GABA exocytosis from cortical nerve endings, but, when added concomitantly to the GABAB agonist, it significantly reduced the 3 µM (±)baclofen-induced inhibition of [3H]GABA exocytosis. Conversely, the mGlu1 antagonist LY367385 (0.03-1 µM), inactive on its own on GABA exocytosis, amplified the 3 µM (±)baclofen-induced inhibition of [3H]GABA overflow. The ( ± )baclofen-induced inhibition of [3H]GABA exocytosis was more pronounced in cortical synaptosomes from Grm1crv4/crv4 mice, which bear a spontaneous mutation of the Grm1 gene leading to the functional inactivation of the mGlu1 receptor. Inasmuch, the expression of GABAB2 receptor protein in cortical synaptosomal lysates from Grm1crv4/crv4 mice was increased when compared to controls. Altogether, these observations seem best interpreted by assuming that mGlu1 coexist with GABAB receptors in GABAergic cortical synaptosomes, where they control GABA receptors in an antagonist-like manner. We then asked whether the mGlu1-mediated control of GABAB receptors is restricted to GABAergic terminals, or if it occurs also in other subpopulations of nerve endings. Release-regulating GABAB receptors also exist in glutamatergic nerve endings. (±)baclofen (1 µM) diminished the 12 mM KCl-evoked [3H]D-aspartate overflow. Also in these terminals, the concomitant presence of 1 µM LY367385, inactive on its own, significantly amplified the inhibitory effect exerted by (±)baclofen on [3H]D-aspartate exocytosis. Confocal microscopy confirmed the colocalization of mGlu1 with GABAB1 and GABAB2 labeling in vesicular glutamate type1 transporter-positive particles. Our results support the conclusion that mGlu1 receptors modulate in an antagonist-like manner presynaptic release-regulating GABAB receptors. This receptor-receptor interaction could be neuroprotective in central disease typified by hyperglutamatergicity.

19.
Phytochemistry ; 68(20): 2584-98, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17574637

RESUMO

Stir bar sorptive extraction (SBSE) was applied in head space mode (HS), coupled with GC/MS, to compare the aroma profile of three truffle species. A total of 119 volatile organic compounds (VOCs) were identified from the fruiting bodies, of which 70 were not yet described in truffles and 60 in fungi. VOCs profile showed a high intra- and inter-specific variability, with alcohols and sulfur compounds dominating the HS of Tuber borchii and, alcohols, aldehydes and aromatic compounds the HS of T. melanosporum and T. indicum. Despite these variations, eight VOCs markers could be identified allowing the discrimination of the three species. Additionally, T. borchii and T. melanosporum both distinguished themselves from T. indicum due to higher aroma content and larger variety of sulfur containing compounds. Mycelial VOCs production was also investigated under two cultural conditions and led to the identification of eight VOCs. On one side, seven of them were also detected in the fruiting body, confirming their mycelial origin. On the other side, the total absence of some class of compounds (i.e. sulfur) in the mycelium raises questions about their origins in the fruiting bodies and confirms deep metabolic changes between the reproductive (fruiting body) and vegetative (mycelium) stages.


Assuntos
Ascomicetos/química , Odorantes/análise , Ascomicetos/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Sensibilidade e Especificidade , Microextração em Fase Sólida , Especificidade da Espécie , Volatilização
20.
Neuropharmacology ; 123: 433-445, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28645622

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder due to loss of upper and lower motor neurons (MNs). The mechanisms of neuronal death are largely unknown, thus prejudicing the successful pharmacological treatment. One major cause for MN degeneration in ALS is represented by glutamate(Glu)-mediated excitotoxicity. We have previously reported that activation of Group I metabotropic Glu receptors (mGluR1 and mGluR5) at glutamatergic spinal cord nerve terminals produces abnormal Glu release in the widely studied SOD1G93A mouse model of ALS. We also demonstrated that halving mGluR1 expression in the SOD1G93A mouse had a positive impact on survival, disease onset, disease progression, and on a number of cellular and biochemical readouts of ALS. We generated here SOD1G93A mice with reduced expression of mGluR5 (SOD1G93AGrm5-/+) by crossing the SOD1G93A mutant mouse with the mGluR5 heterozigous Grm5-/+ mouse. SOD1G93AGrm5-/+ mice showed prolonged survival probability and delayed pathology onset. These effects were associated to enhanced number of preserved MNs, decreased astrocyte and microglia activation, reduced cytosolic free Ca2+ concentration, and regularization of abnormal Glu release in the spinal cord of SOD1G93AGrm5-/+ mice. Unexpectedly, only male SOD1G93AGrm5-/+ mice showed improved motor skills during disease progression vs. SOD1G93A mice, while SOD1G93AGrm5-/+ females did not. These results demonstrate that a lower constitutive level of mGluR5 has a significant positive impact in mice with ALS and support the idea that blocking Group I mGluRs may represent a potentially effective pharmacological approach to the disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Destreza Motora/fisiologia , Receptor de Glutamato Metabotrópico 5/genética , Receptores de Glutamato Metabotrópico/metabolismo , Fatores Sexuais , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa