Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Learn Mem ; 25(12): 620-628, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30442770

RESUMO

Long-term but not short-term memory and synaptic plasticity in many brain areas require neurotrophin signaling, transcription, and epigenetic mechanisms including DNA methylation. However, it has been difficult to relate these cellular mechanisms directly to behavior because of the immense complexity of the mammalian brain. To address that problem, we and others have examined numerically simpler systems such as the hermaphroditic marine mollusk Aplysia californica. As a further simplification, we have used a semi-intact preparation of the Aplysia siphon withdrawal reflex in which it is possible to relate cellular plasticity directly to behavioral learning. We find that inhibitors of neurotrophin signaling, transcription, and DNA methylation block sensitization and classical conditioning beginning ∼1 h after the start of training, which is in the time range of an intermediate-term stage of plasticity that combines elements of short- and long-term plasticity and may form a bridge between them. Injection of decitabine (an inhibitor of DNA methylation that may have other actions in these experiments) into an LE sensory neuron blocks the neural correlates of conditioning in the same time range. In addition, we found that both DNA and RNA methylation in the abdominal ganglion are correlated with learning in the same preparations. These results begin to suggest the functions and integration of these different molecular mechanisms during behavioral learning.


Assuntos
Condicionamento Clássico/fisiologia , Metilação de DNA , Memória/fisiologia , Fatores de Crescimento Neural/metabolismo , Plasticidade Neuronal/fisiologia , Transcrição Gênica , Animais , Aplysia , Condicionamento Clássico/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Inibidores Enzimáticos/farmacologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/metabolismo , Memória/efeitos dos fármacos , Microeletrodos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , RNA/metabolismo , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 112(52): 16030-5, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668355

RESUMO

Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K(+) and Na(+) ions, and is selectively blocked by Cs(+) and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 µM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway.


Assuntos
Condicionamento Clássico/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Neurônios Motores/fisiologia , Sequência de Aminoácidos , Animais , Condicionamento Clássico/efeitos dos fármacos , AMP Cíclico/farmacologia , GMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Feminino , Transporte de Íons/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Óxido Nítrico/metabolismo , Oócitos/metabolismo , Oócitos/fisiologia , Potássio/metabolismo , Pirimidinas/farmacologia , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Xenopus laevis
4.
J Biol Chem ; 286(12): 10155-62, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21257750

RESUMO

The Saccharomyces cerevisiae F(1)F(0)-ATP synthase peripheral stalk is composed of the OSCP, h, d, and b subunits. The b subunit has two membrane-spanning domains and a large hydrophilic domain that extends along one side of the enzyme to the top of F(1). In contrast, the Escherichia coli peripheral stalk has two identical b subunits, and subunits with substantially altered lengths can be incorporated into a functional F(1)F(0)-ATP synthase. The differences in subunit structure between the eukaryotic and prokaryotic peripheral stalks raised a question about whether the two stalks have similar physical and functional properties. In the present work, the length of the S. cerevisiae b subunit has been manipulated to determine whether the F(1)F(0)-ATP synthase exhibited the same tolerances as in the bacterial enzyme. Plasmid shuffling was used for ectopic expression of altered b subunits in a strain carrying a chromosomal disruption of the ATP4 gene. Wild type growth phenotypes were observed for insertions of up to 11 and a deletion of four amino acids on a nonfermentable carbon source. In mitochondria-enriched fractions, abundant ATP hydrolysis activity was seen for the insertion mutants. ATPase activity was largely oligomycin-insensitive in these mitochondrial fractions. In addition, very poor complementation was seen in a mutant with an insertion of 14 amino acids. Lengthier deletions yielded a defective enzyme. The results suggest that although the eukaryotic peripheral stalk is near its minimum length, the b subunit can be extended a considerable distance.


Assuntos
Mitocôndrias/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Escherichia coli/enzimologia , Escherichia coli/genética , Mitocôndrias/química , Mitocôndrias/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa