Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Subcell Biochem ; 82: 171-230, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28101863

RESUMO

Cytoplasmic intermediate filaments (IFs) represent a major cytoskeletal network contributing to cell shape, adhesion and migration as well as to tissue resilience and renewal in numerous bilaterians, including mammals. The observation that IFs are dispensable in cultured mammalian cells, but cause tissue-specific, life-threatening disorders, has pushed the need to investigate their function in vivo. In keeping with human disease, the deletion or mutation of murine IF genes resulted in highly specific pathologies. Epidermal keratins, together with desmin, are essential to protect corresponding tissues against mechanical force but also participate in stabilizing cell adhesion and in inflammatory signalling. Surprisingly, other IF proteins contribute to tissue integrity to a much lesser extent than anticipated, pointing towards their role in stress situations. In support, the overexpression of small chaperones or the interference with inflammatory signalling in several settings has been shown to rescue severe tissue pathologies that resulted from the expression of mutant IF proteins. It stills remains an open issue whether the wide range of IF disorders share similar pathomechanisms. Moreover, we lack an understanding how IF proteins participate in signalling processes. Now, with a large number of mouse models in hand, the next challenge will be to develop organotypic cell culture models to dissect pathomechanisms at the molecular level, to employ Crispr/Cas-mediated genome engineering to optimize models and, finally, to combine available animal models with medicinal chemistry for the development of molecular therapies.


Assuntos
Proteínas de Filamentos Intermediários , Animais , Doenças do Tecido Conjuntivo , Citoplasma , Modelos Animais de Doenças , Humanos
2.
J Cell Sci ; 126(Pt 18): 4195-207, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23843618

RESUMO

Plectin is a versatile cytolinker of the plakin family conferring cell resilience to mechanical stress in stratified epithelia and muscles. It acts as a critical organizer of the cytoskeletal system by tethering various intermediate filament (IF) networks through its C-terminal IF-binding domain (IFBD). Mutations affecting the IFBD cause devastating human diseases. Here, we show that serine 4642, which is located in the extreme C-terminus of plectin, is phosphorylated in different cell lines. Phosphorylation of S4642 decreased the ability of plectin IFBD to associate with various IFs, as assessed by immunofluorescence microscopy and cell fractionation studies, as well as in yeast two-hybrid assays. Plectin phosphorylated at S4642 was reduced at sites of IF network anchorage along cell-substrate contacts in both skin and cultured keratinocytes. Treatment of SK-MEL-2 and HeLa cells with okadaic acid increased plectin S4642 phosphorylation, suggesting that protein phosphatase 2A dephosphorylates this residue. Moreover, plectin S4642 phosphorylation was enhanced after cell treatment with EGF, phorbol ester, sorbitol and 8-bromo-cyclic AMP, as well as during wound healing and protease-mediated cell detachment. Using selective protein kinase inhibitors, we identified two different kinases that modulate the phosphorylation of plectin S4642 in HeLa cells: MNK2, which is downstream of the ERK1/2-dependent MAPK cascade, and PKA. Our study indicates that phosphorylation of S4642 has an important regulatory role in the interaction of plectin with IFs and identifies a novel link between MNK2 and the cytoskeleton.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Plectina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Humanos , Filamentos Intermediários/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Plectina/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Serina/genética , Transfecção
3.
Eur J Hum Genet ; 28(9): 1218-1230, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32066935

RESUMO

Progeroid syndromes are a group of rare genetic disorders, which mimic natural aging. Unraveling the molecular defects in such conditions could impact our understanding of age-related syndromes such as Alzheimer's or cardiovascular diseases. Here we report a de novo heterozygous missense variant in the intermediate filament vimentin (c.1160 T > C; p.(Leu387Pro)) causing a multisystem disorder associated with frontonasal dysostosis and premature aging in a 39-year-old individual. Human vimentin p.(Leu387Pro) expression in zebrafish perturbed body fat distribution, and craniofacial and peripheral nervous system development. In addition, studies in patient-derived and transfected cells revealed that the variant affects vimentin turnover and its ability to form filaments in the absence of wild-type vimentin. Vimentin p.(Leu387Pro) expression diminished the amount of peripilin and reduced lipid accumulation in differentiating adipocytes, recapitulating key patient's features in vivo and in vitro. Our data highlight the function of vimentin during development and suggest its contribution to natural aging.


Assuntos
Progéria/genética , Vimentina/genética , Células 3T3-L1 , Adipócitos/metabolismo , Adiposidade , Adulto , Animais , Células Cultivadas , Genes Dominantes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células MCF-7 , Masculino , Camundongos , Mutação , Neurogênese , Perilipina-1/metabolismo , Progéria/patologia , Vimentina/metabolismo , Peixe-Zebra
4.
PLoS One ; 13(10): e0205038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286183

RESUMO

The interaction of intermediate filaments (IFs) with the cell-cell adhesion complexes desmosomes is crucial for cytoskeletal organization and cell resilience in the epidermis and heart. The intracellular desmosomal protein desmoplakin anchors IFs to the cell adhesion complexes predominantly via its four last carboxy-terminal domains (C-terminus). However, it remains unclear why the C-terminus of desmoplakin interacts with different IF types or if there are different binding affinities for each type of IFs that may influence the stability of cell-specific adhesion complexes. By yeast three-hybrid and fluorescence binding assays, we found that the coiled-coil 1 of the conserved central rod domain of the heterodimeric cytokeratins (Ks) 5 and 14 (K5/K14) was required for their interaction with the C-terminus of desmoplakin, while their unique amino head- and C-tail domains were dispensable. Similar findings were obtained in vitro with K1/K10, and the type III IF proteins desmin and vimentin. Binding assays testing the C-terminus of desmoplakin with assembled K5/K14 and desmin IFs yielded an apparent affinity in the nM range. Our findings reveal that the same conserved domain of IF proteins binds to the C-terminus of desmoplakin, which may help explain the previously reported broad binding IF-specificity to desmoplakin. Our data suggest that desmoplakin high-affinity binding to diverse IF proteins ensures robust linkages of IF cytoskeleton and desmosomes that maintain the structural integrity of cellular adhesion complexes. In summary, our results give new insights into the molecular basis of the IF-desmosome association.


Assuntos
Desmoplaquinas/metabolismo , Proteínas de Filamentos Intermediários/química , Proteínas de Filamentos Intermediários/metabolismo , Filamentos Intermediários/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Ligação Proteica , Alinhamento de Sequência
6.
Methods Enzymol ; 569: 117-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26778556

RESUMO

Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.


Assuntos
Proteínas de Fluorescência Verde/química , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas de Transporte/química , Proteínas do Citoesqueleto/química , Desmoplaquinas/química , Distonina , Células HEK293 , Humanos , Proteínas Imobilizadas/química , Filamentos Intermediários/química , Queratinas/química , Proteínas do Tecido Nervoso/química , Ligação Proteica
7.
Elife ; 5: e11117, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26840051

RESUMO

Intermediate filament (IF) proteins, including nuclear lamins and cytoplasmic IF proteins, are essential cytoskeletal components of bilaterian cells. Despite their important role in protecting tissues against mechanical force, no cytoplasmic IF proteins have been convincingly identified in arthropods. Here we show that the ancestral cytoplasmic IF protein gene was lost in the entire panarthropod (onychophoran + tardigrade + arthropod) rather than arthropod lineage and that nuclear, lamin-derived proteins instead acquired new cytoplasmic roles at least three times independently in collembolans, copepods, and tardigrades. Transcriptomic and genomic data revealed three IF protein genes in the tardigrade Hypsibius dujardini, one of which (cytotardin) occurs exclusively in the cytoplasm of epidermal and foregut epithelia, where it forms belt-like filaments around each epithelial cell. These results suggest that a lamin derivative has been co-opted to enhance tissue stability in tardigrades, a function otherwise served by cytoplasmic IF proteins in all other bilaterians.


Assuntos
Filamentos Intermediários/metabolismo , Laminas/metabolismo , Tardígrados/metabolismo , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Genômica , Filamentos Intermediários/genética , Tardígrados/genética
8.
Curr Opin Cell Biol ; 32: 56-64, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25594948

RESUMO

Keratins form the major intermediate filament cytoskeleton of epithelia and are assembled from heterodimers of 28 type I and 26 type II keratins in cell- and differentiation-dependent patterns. By virtue of their primary sequence composition, interactions with cell adhesion complexes and components of major signaling cascades, keratins act as targets and effectors of mechanical force and chemical signals to determine cell mechanics, epithelial cohesion and modulate signaling in keratin isotype-specific manners. Therefore, cell-specific keratin expression and organization impact on cell growth, migration and invasion. Here, we review the recent literature, focusing on the question how keratin networks are regulated and how the interplay of keratins with adhesion complexes affects these processes and provides a framework to understand keratins contribution to blistering and inflammatory disorders and to tumor metastasis.


Assuntos
Queratinas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Humanos , Queratinas/química , Mapas de Interação de Proteínas
10.
J Cell Biol ; 211(5): 1057-75, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26644517

RESUMO

Keratin intermediate filaments (KIFs) protect the epidermis against mechanical force, support strong adhesion, help barrier formation, and regulate growth. The mechanisms by which type I and II keratins contribute to these functions remain incompletely understood. Here, we report that mice lacking all type I or type II keratins display severe barrier defects and fragile skin, leading to perinatal mortality with full penetrance. Comparative proteomics of cornified envelopes (CEs) from prenatal KtyI(-/-) and KtyII(-/-)(K8) mice demonstrates that absence of KIF causes dysregulation of many CE constituents, including downregulation of desmoglein 1. Despite persistence of loricrin expression and upregulation of many Nrf2 targets, including CE components Sprr2d and Sprr2h, extensive barrier defects persist, identifying keratins as essential CE scaffolds. Furthermore, we show that KIFs control mitochondrial lipid composition and activity in a cell-intrinsic manner. Therefore, our study explains the complexity of keratinopathies accompanied by barrier disorders by linking keratin scaffolds to mitochondria, adhesion, and CE formation.


Assuntos
Epiderme/metabolismo , Queratinas/metabolismo , Lipídeos/química , Mitocôndrias/metabolismo , Animais , Adesão Celular , Membrana Celular/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Filamentos Intermediários/metabolismo , Queratinócitos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteoma/metabolismo , Fatores de Transcrição/metabolismo
11.
J Invest Dermatol ; 134(4): 885-894, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24352042

RESUMO

The plakin family consists of giant proteins involved in the cross-linking and organization of the cytoskeleton and adhesion complexes. They further modulate several fundamental biological processes, such as cell adhesion, migration, and polarization or signaling pathways. Inherited and acquired defects of plakins in humans and in animal models potentially lead to dramatic manifestations in the skin, striated muscles, and/or nervous system. These observations unequivocally demonstrate the key role of plakins in the maintenance of tissue integrity. Here we review the characteristics of the mammalian plakin members BPAG1 (bullous pemphigoid antigen 1), desmoplakin, plectin, envoplakin, epiplakin, MACF1 (microtubule-actin cross-linking factor 1), and periplakin, highlighting their role in skin homeostasis and diseases.


Assuntos
Regulação da Expressão Gênica , Plaquinas/genética , Plaquinas/fisiologia , Fenômenos Fisiológicos da Pele , Animais , Doenças Autoimunes/genética , Adesão Celular , Movimento Celular , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Homeostase , Humanos , Camundongos , Mutação , Neoplasias/genética , Filogenia , Transdução de Sinais , Pele/metabolismo
12.
J Invest Dermatol ; 134(11): 2776-2783, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24940650

RESUMO

Plectin, a cytolinker of the plakin family, anchors the intermediate filament (IF) network formed by keratins 5 and 14 (K5/K14) to hemidesmosomes, junctional adhesion complexes in basal keratinocytes. Genetic alterations of these proteins cause epidermolysis bullosa simplex (EBS) characterized by disturbed cytoarchitecture and cell fragility. The mechanisms through which mutations located after the documented plectin IF-binding site, composed of the plakin-repeat domain (PRD) B5 and the linker, as well as mutations in K5 or K14, lead to EBS remain unclear. We investigated the interaction of plectin C terminus, encompassing four domains, the PRD B5, the linker, the PRD C, and the C extremity, with K5/K14 using different approaches, including a rapid and sensitive fluorescent protein-binding assay, based on enhanced green fluorescent protein-tagged proteins (FluoBACE). Our results demonstrate that all four plectin C-terminal domains contribute to its association with K5/K14 and act synergistically to ensure efficient IF binding. The plectin C terminus predominantly interacted with the K5/K14 coil 1 domain and bound more extensively to K5/K14 filaments compared with monomeric keratins or IF assembly intermediates. These findings indicate a multimodular association of plectin with K5/K14 filaments and give insights into the molecular basis of EBS associated with pathogenic mutations in plectin, K5, or K14 genes.


Assuntos
Queratina-14/química , Queratina-5/química , Plectina/química , Sítios de Ligação , Linhagem Celular Tumoral , Epidermólise Bolhosa Simples/imunologia , Células HEK293 , Humanos , Queratinas/química , Distrofias Musculares/imunologia , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Técnicas do Sistema de Duplo-Híbrido
13.
Eur J Cell Biol ; 90(5): 390-400, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21296452

RESUMO

Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.


Assuntos
Desmina/química , Desmina/metabolismo , Plectina/metabolismo , Vimentina/química , Vimentina/metabolismo , Animais , Desmina/genética , Humanos , Filamentos Intermediários/química , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Plectina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Vimentina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa