Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 605(7909): 340-348, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344983

RESUMO

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern1,2. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern3,4. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle5,6. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 106 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids7. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Inibidores de Serina Proteinase , Animais , COVID-19/prevenção & controle , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
2.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257256

RESUMO

Tomatidine (TO) is a natural narrow-spectrum antibiotic acting on the Staphylococcus aureus small colony variant (SCV) with a minimal inhibitory concentration (MIC) of 0.06 µg/mL while it shows no activity against prototypical strains (MIC > 128 µg/mL). To expand the spectrum of activity of TO, the 3ß-hydroxyl group was substituted with an ethane-1,2-diamine, resulting in two diastereoisomers, TM-02 (C3-ß) and TM-03 (C3-α). These molecules are equally potent against prototypical S. aureus and E. coli strains (MIC 8 and 32 µg/mL, respectively), whereas TM-02 is more potent against SCV (MIC 0.5 µg/mL) and hyperpermeable E. coli strains (MIC 1 µg/mL). The differences in their modes of action were investigated. We used membrane vesicles to confirm the inhibition of the bacterial ATP synthase, the documented target of TO, and measured effects on bacterial cell membranes. Both molecules inhibited E. coli ATP synthase, with Ki values of 1.1 µM and 3.5 µM for TM-02 and TM-03, respectively, and the bactericidal effect of TM-02 was linked to ATP synthase inhibition. Furthermore, TM-02 had no major effect on the membrane fluidity and gradually reduced membrane potential. In contrast, TM-03 caused structural damages to membranes and completely disrupted the membrane potential (>90%). We were successful in broadening the spectrum of activity of TO. C3-ß-diastereoisomers may have more specific antibacterial action than C3-α.


Assuntos
Escherichia coli , Staphylococcus aureus , Tomatina/análogos & derivados , Antibacterianos/farmacologia , Trifosfato de Adenosina
3.
Mol Pharm ; 20(3): 1577-1590, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36781165

RESUMO

To investigate the structure-cellular penetration relationship of guanidinium-rich transporters (GRTs), we previously designed PGua4, a five-amino acid peptoid containing a conformationally restricted pattern of eight guanidines, which showed high cell-penetrating abilities and low cell toxicity. Herein, we characterized the cellular uptake selectivity, internalization pathway, and intracellular distribution of PGua4, as well as its capacity to deliver cargo. PGua4 exhibits higher penetration efficiency in HeLa cells than in six other cell lines (A549, Caco-2, fibroblast, HEK293, Mia-PaCa2, and MCF7) and is mainly internalized by clathrin-mediated endocytosis and macropinocytosis. Confocal microscopy showed that it remained trapped in endosomes at low concentrations but induced pH-dependent endosomal membrane destabilization at concentrations ≥10 µM, allowing its diffusion into the cytoplasm. Importantly, PGua4 significantly enhanced macropinocytosis and the cellular uptake and cytosolic delivery of large IgGs following noncovalent complexation. Therefore, in addition to its peptoid nature conferring high resistance to proteolysis, PGua4 presents characteristics of a promising tool for IgG delivery and therapeutic applications.


Assuntos
Peptoides , Humanos , Citosol/metabolismo , Guanidina , Células HeLa , Peptoides/metabolismo , Células CACO-2 , Células HEK293 , Endocitose , Endossomos/metabolismo
4.
Inorg Chem ; 62(9): 3847-3859, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802562

RESUMO

The organic molecule 2-(1-phenyl-1-(pyridin-2-yl)ethyl)-6-(3-(1-phenyl-1-(pyridin-2-yl)ethyl)phenyl)pyridine (H3L) has been designed, prepared, and employed to synthesize the encapsulated-type pseudo-tris(heteroleptic) iridium(III) derivative Ir(κ6-fac-C,C',C″-fac-N,N',N″-L). Its formation takes place as a result of the coordination of the heterocycles to the iridium center and the ortho-CH bond activation of the phenyl groups. Dimer [Ir(µ-Cl)(η4-COD)]2 is suitable for the preparation of this compound of class [Ir(9h)] (9h = 9-electron donor hexadentate ligand), but Ir(acac)3 is a more appropriate starting material. Reactions were carried out in 1-phenylethanol. In contrast to the latter, 2-ethoxyethanol promotes the metal carbonylation, inhibiting the full coordination of H3L. Complex Ir(κ6-fac-C,C',C″-fac-N,N',N″-L) is a phosphorescent emitter upon photoexcitation, which has been employed to fabricate four yellow emitting devices with 1931 CIE (x:y) ∼ (0.52:0.48) and a maximum wavelength at 576 nm. These devices display luminous efficacies, external quantum efficiencies, and power efficacies at 600 cd m-2, which lie in the ranges 21.4-31.3 cd A-1, 7.8-11.3%, and 10.2-14.1 lm W1-, respectively, depending on the device configuration.

5.
Inorg Chem ; 62(49): 19821-19837, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988596

RESUMO

Two complementary procedures are presented to prepare cis-pyridyl-iridium(III) emitters of the class [3b+3b+3b'] with two orthometalated ligands of the 2-phenylpyridine type (3b) and a third ligand (3b'). They allowed to obtain four emitters of this class and to compare their properties with those of the trans-pyridyl isomers. The finding starts from IrH5(PiPr3)2, which reacts with 2-(p-tolyl)pyridine to give fac-[Ir{κ2-C,N-[C6MeH3-py]}3] with an almost quantitative yield. Stirring the latter in the appropriate amount of a saturated solution of HCl in toluene results in the cis-pyridyl adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} stabilized with p-tolylpyridinium chloride, which can also be transformed into dimer cis-[Ir(µ-OH){κ2-C,N-[C6MeH3-py]}2]2. Adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} directly generates cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-Isoqui]}] and cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-py]}] by transmetalation from Li[2-(isoquinolin-1-yl)-C6H4] and Li[py-2-C6H4]. Dimer cis-[Ir(µ-OH){κ2-C,N-[C6MeH3-py]}2]2 is also a useful starting complex when the precursor molecule of 3b' has a fairly acidic hydrogen atom, suitable for removal by hydroxide groups. Thus, its reactions with 2-picolinic acid and acetylacetone (Hacac) lead to cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,N-[OC(O)-py]} and cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,O-[acac]}. The stereochemistry of the emitter does not significantly influence the emission wavelengths. On the contrary, its efficiency is highly dependent on and associated with the stability of the isomer. The more stable isomer shows a higher quantum yield and color purity.

6.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203338

RESUMO

Medicinal chemistry is constantly searching for new approaches to develop more effective and targeted therapeutic molecules. The design of peptidomimetics is a promising emerging strategy that is aimed at developing peptides that mimic or modulate the biological activity of proteins. Among these, stapled peptides stand out for their unique ability to stabilize highly frequent helical motifs, but they have failed to be systematically reported. Here, we exploit chemically diverse helix-inducing i, i + 4 constraints-lactam, hydrocarbon, triazole, double triazole and thioether-on two distinct short sequences derived from the N-terminal peptidase domain of hACE2 upon structural characterization and in silico alanine scan. Our overall objective was to provide a sequence-independent comparison of α-helix-inducing staples using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. We identified a 9-mer lactam stapled peptide derived from the hACE2 sequence (His34-Gln42) capable of reaching its maximal helicity of 55% with antiviral activity in bioreporter- and pseudovirus-based inhibition assays. To the best of our knowledge, this study is the first comprehensive investigation comparing several cyclization methods with the goal of generating stapled peptides and correlating their secondary structures with PPI inhibitions using a highly topical model system (i.e., the interaction of SARS-CoV-2 Spike RBD with hACE2).


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ciclização , Lactamas , Peptídeos/farmacologia , Triazóis
7.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446619

RESUMO

Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.


Assuntos
Alcaloides , Saúde da População , Solanum lycopersicum , Solanum nigrum , Solanum tuberosum , Solanum , Humanos , Solanum/metabolismo , Alcaloides/química , Solanum tuberosum/metabolismo , Solanum nigrum/metabolismo
8.
Inorg Chem ; 61(24): 9019-9033, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35438993

RESUMO

Alkynyl ligands stabilize dimers [Ir(µ-X)(3b)2]2 with a cis disposition of the heterocycles of the 3b ligands, in contrast to chloride. Thus, the complexes of this class─cis-[Ir(µ2-η2-C≡CPh){κ2-C,N-(C6H4-Isoqui)}2]2 (Isoqui = isoquinoline) and cis-[Ir(µ2-η2-C≡CR){κ2-C,N-(MeC6H3-py)}2]2 (R = Ph, tBu)─have been prepared in high yields, starting from the dihydroxo-bridged dimers trans-[Ir(µ-OH){κ2-C,N-(C6H4-Isoqui)}2]2 and trans-[Ir(µ-OH){κ2-C,N-(MeC6H3-py)}2]2 and terminal alkynes. Subsequently, the acetylide ligands have been employed as building blocks to prepare the orange and green iridium(III) phosphorescent emitters, Ir{κ2-C,N-[C(CH2Ph)Npy]}{κ2-C,N-(C6H4-Isoqui)}2 and Ir{κ2-C,N-[C(CH2R)Npy]}{κ2-C,N-(MeC6H3-py)}2 (R = Ph, tBu), respectively, with an octahedral structure of fac carbon and nitrogen atoms. The green emitter Ir{κ2-C,N-[C(CH2tBu)Npy]}{κ2-C,N-(MeC6H3-py)}2 reaches 100% of quantum yield in both the poly(methyl methacrylate) (PMMA) film and 2-MeTHF at room temperature. In organic light-emitting diode (OLED) devices, it demonstrates very saturated green emission at a peak wavelength of 500 nm, with an external quantum efficiency (EQE) of over 12% or luminous efficacy of 30.7 cd/A.

9.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566143

RESUMO

In order to modify amino acids, the C-terminus carboxylic acid usually needs to be protected, typically as a methyl ester. However, standard cleavage of methyl esters requires either highly basic or acidic conditions, which are not compatible with Fmoc or acid-labile protecting groups. This highlights the need for orthogonal conditions that permit selective deprotection of esters to create SPPS-ready amino acids. Herein, mild orthogonal ester hydrolysis conditions are systematically explored using calcium(II) iodide as a protective agent for the Fmoc protecting group and optimized for a broad scope of amino esters. Our optimized reaction improved on the already known trimethyltin hydroxide, as it produced better yields with greener, inexpensive chemicals and a less extensive energy expenditure.


Assuntos
Ésteres , Iodetos , Aminoácidos/química , Cálcio , Ésteres/química , Fluorenos/química , Hidrólise , Substâncias Protetoras
10.
Inorg Chem ; 60(15): 11347-11363, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34291933

RESUMO

1-Phenyl-3-(1-phenyl-1-(pyridin-2-yl)ethyl)isoquinoline (H2MeL) has been prepared by Pd(N-XantPhos)-catalyzed "deprotonative cross-coupling processes" to synthesize new phosphorescent red iridium(III) emitters (601-732 nm), including the carbonyl derivative Ir(κ4-cis-C,C'-cis-N,N'-MeL)Cl(CO) and the acetylacetonate compound Ir(κ4-cis-C,C'-cis-N,N'-MeL)(acac). The tetradentate 6e-donor ligand (6tt') of these complexes is formed by two different bidentate units, namely, an orthometalated 2-phenylisoquinoline and an orthometalated 2-benzylpyridine. The link between the bidentate units reduces the number of possible stereoisomers of the structures [6tt' + 3b] (3b = bidentate 3e-donor ligand), with respect to a [3b + 3b' + 3b″] emitter containing three free bidentate units, and it permits a noticeable stereocontrol. Thus, the isomers fac-Ir(κ4-cis-C,C'-cis-N,N'-MeL){κ2-C,N-(C6H4-py)}, mer-Ir(κ4-cis-C,C'-cis-N,N'-MeL){κ2-C,N-(C6H3R-py)}, and mer-Ir(κ4-trans-C,C'-cis-N,N'-MeL){κ2-C,N-(C6HR-py)} (R = H, Me) have also been selectively obtained. The new emitters display short lifetimes (0.7-4.6 µs) and quantum yields in a doped poly(methyl methacrylate) film at 5 wt % and 2-methyltetrahydrofuran at room temperature between 0.08 and 0.58. The acetylacetonate complex Ir(κ4-cis-C,C'-cis-N,N'-MeL)(acac) has been used as a dopant for a red PhOLED device with an electroluminescence λmax of 672 nm and an external quantum efficiency of 3.4% at 10 mA/cm2.

11.
Molecules ; 26(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34641551

RESUMO

Tomatidine has recently generated a lot of interest amongst the pharmacology, medicine, and biology fields of study, especially for its newfound activity as an antibiotic agent capable of targeting multiple strains of bacteria. In the light of its low natural abundance and high cost, an efficient and scalable multi-gram synthesis of tomatidine has been developed. This synthesis uses a Suzuki-Miyaura-type coupling reaction as a key step to graft an enantiopure F-ring side chain to the steroidal scaffold of the natural product, which was accessible from low-cost and commercially available diosgenin. A Lewis acid-mediated spiroketal opening followed by an azide substitution and reduction sequence is employed to generate the spiroaminoketal motif of the natural product. Overall, this synthesis produced 5.2 g in a single pass in 15 total steps and 15.2% yield using a methodology that is atom economical, scalable, and requires no flash chromatography purifications.


Assuntos
Antibacterianos/síntese química , Produtos Biológicos/síntese química , Tomatina/análogos & derivados , Antibacterianos/química , Produtos Biológicos/química , Estrutura Molecular , Tomatina/síntese química , Tomatina/química
12.
Inorg Chem ; 59(21): 15877-15887, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33059453

RESUMO

A synthetic methodology to prepare iridium(III) emitters of the class [3b+3b+3b'] with two ortho-metalated 1-phenylisoquinolines and an asymmetrical ß-diketonate has been discovered. The abstraction of the chloride ligands of the dimer [Ir(µ-Cl){κ2-C,N-(C6H4-isoqui)}2]2 (1, C6H5-isoqui = 1-phenylisoquinoline) with AgBF4 in acetone and the subsequent addition of water to the resulting solution affords the water solvate mononuclear complex [Ir{κ2-C,N-(C6H4-isoqui)}2(H2O)2]BF4 (2), which reacts with KOH to give the dihydroxo-bridged dimer [Ir(µ-OH){κ2-C,N-(C6H4-isoqui)}2]2 (3). Treatment of the latter with dimethyl acetylenedicarboxylate leads to Ir{κ2-C,N-(C6H4-isoqui)}2{κ2-O,O-[OC(CO2CH3)CHC(OCH3)O]} (4), as a result of the anti-addition of the O-H bond of a mononuclear [Ir(OH){κ2-C,N-(C6H4-isoqui)}2] fragment to the C-C triple bond of the alkyne and the coordination of one of the carboxylate substituents to the metal center. Complex 3 also reacts with α,ß-unsaturated ketones. The reaction with 3-(4-methylphenyl)-1-phenylprop-2-en-1-one affords Ir{κ2-C,N-(C6H4-isoqui)}2{κ2-O,O-[OC(C6H5)CHC(p-C6H4Me)O]} (5), whereas methyl vinyl ketone gives a mixture of Ir{κ2-C,N-(C6H4-isoqui)}2{κ2-O,O-[OC(CH3)CHCHO]} (6) and Ir{κ2-C,N-(C6H4-isoqui)}2{κ2-O,O-[OC(CH3)CHC(CH═CH2)O]} (7). Complexes 5 and 6 are the result of the addition of the O-H bond of the mononuclear [Ir(OH){κ2-C,N-(C6H4-isoqui)}2] fragment to the C-C double bond of the α,ß-unsaturated ketones and the coordination of the carbonyl group to the iridium center, to generate O,O-chelates which lose molecular hydrogen to aromatize into the asymmetrical ß-diketonate ligands. Complexes 4-7 are phosphorescent emitters in the red spectral region (599-672 nm) in doped poly(methyl methacrylate) (PMMA) film at 5 wt % at room temperature and 2-methyltetrahydrofuran at room temperature and 77 K. They display short lifetimes (0.8-2.5 µs) and quantum yields in both doped PMMA films and in 2-methyltetrahydrofuran at room temperature depending on the substituents of the ß-diketonate: about 0.6-0.5 for 4 and 6 and ca. 0.35 for 5 and 7.

13.
Inorg Chem ; 59(17): 12286-12294, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32856908

RESUMO

To prepare new phosphorescent iridium(III) emitters, 2-phenyl-6-(1-phenyl-1-(pyridin-2-yl)ethyl)pyridine (H2L) has been designed and its reactions with [Ir(µ-Cl)(η4-COD)]2 (1, COD = 1,5-cyclooctadiene) have been studied. The products obtained depend on the refluxing temperature of the solvent. Thus, complexes Ir(κ4-C,C',N,N'-L)Cl(CO) (2), [Ir(η4-COD)(κ2-N,N'-H2L)][IrCl2(η4-COD)] (3), and [Ir(µ-Cl)(κ4-C,C',N,N'-L)]2 (4) have been formed in 2-ethoxyethanol, propan-2-ol, and 1-phenylethanol, respectively. Complex 4 reacts with K(acac) to give the acetylacetonate derivative Ir(κ4-C,C',N,N'-L)(acac) (5). Complexes 2 and 5 are efficient blue-green and green emitters of classes [6tt+1m+2m] and [6tt+3b], respectively. They display lifetimes in the range of 1.1-4.5 µs and high quantum yields (0.54-0.87) in both PMMA films and 2-MeTHF at room temperature.

14.
Inorg Chem ; 59(6): 3838-3849, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32119526

RESUMO

The way to prepare molecular emitters [5t + 4t'] of iridium(III) with a 5t ligand derived from the abstraction of the hydrogen atom at position 2 of the aryl group of 1,3-di(2-pyridyl)benzene (dpybH) is shown. In addition, the photophysical properties of the new emitters are compared with those of their counterparts resulting from the deprotonation of 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyMebH), at the same position, which are also synthesized. Treatment of 0.5 equiv of the dimer [Ir(µ-Cl)(η2-COE)2]2 (COE = cyclooctene) with 1.0 equiv of Hg(dpyb)Cl leads to the iridium(III) derivative IrCl2{κ3-N,C,N-(dpyb)}(η2-COE) (3), which reacts with 2-(1H-imidazol-2-yl)-6-phenylpyridine (HNImpyC6H5) and 2-(1H-benzimidazol-2-yl)-6-phenylpyridine (HNBzimpyC6H5) in the presence of Na2CO3 to give Ir{κ3-C,N,N-(NImpyC6H4)}{κ3-N,C,N-(dpyb)} (4) and Ir{κ3-C,N,N-(NBzimpyC6H4)}{κ3-N,C,N-(dpyb)} (5), respectively. Similar reactions of the Williams's dimer [IrCl(µ-Cl){κ3-N,C,N-(dpyMeb)}]2 with HNImpyC6H5 and HNBzimpyC6H5 in the presence of Na2CO3 afford the dimethylated counterparts Ir{κ3-C,N,N-(NImpyC6H4)}{κ3-N,C,N-(dpyMeb)} (6) and Ir{κ3-C,N,N-(NBzimpyC6H4)}{κ3-N,C,N-(dpyMeb)} (7), whereas 2-(6-phenylpyridine-2-yl)-1H-indole (HIndpyC6H5) initially gives IrH{κ2-N,N-(IndpyC6H5)}{κ3-N,C,N-(dpyMeb)} (8) and subsequently Ir{κ3-C,N,N-(IndpyC6H4)}{κ3-N,C,N-(dpyMeb)} (9). Complexes 4-7 are phosphorescent green emitters (λem 490-550 nm), whereas 9 is greenish yellow emissive (λem 547-624 nm). They display lifetimes in the range 0.5-9.7 µs and quantum yields in both doped poly(methyl)methacrylate films and in 2-methyltetrahydrofuran at room temperature depending upon the ligands: 0.5-0.7 for 6 and 7, about 0.4 for 4 and 5, and 0.3-0.2 for 9.

15.
Artigo em Inglês | MEDLINE | ID: mdl-29610201

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti-Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro-generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >105-fold for FC04-100.


Assuntos
Antibacterianos/farmacologia , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Tomatina/análogos & derivados , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Tomatina/farmacologia
16.
Inorg Chem ; 57(17): 10744-10760, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30137969

RESUMO

A new class of phosphorescent tris-heteroleptic iridium(III) complexes has been discovered. The addition of PhMeImAgI (PhMeIm = 1-phenyl-3-methylimidazolylidene) to the dimer [Ir(µ-Cl)(COD)]2 (1; COD = 1,5-cyclooctadiene) affords IrCl(COD)(PhMeIm) (2), which reacts with 1-phenylisoquinoline, 2-phenylpyridine, and 2-(2,4-difluorophenyl)pyridine to give the respective dimers [Ir(µ-Cl){κ2- C, C-(C6H4-ImMe)}{κ2- C, N-(C6H4-isoqui)}]2 (3), [Ir(µ-Cl){κ2- C, C-(C6H4-ImMe)}{κ2- C, N-(C6H4-py)}]2 (4), and [Ir(µ-Cl){κ2- C, C-(C6H4-ImMe)}{κ2- C, N-(C6F2H2-py)}]2 (5), as a result of the N-heterocyclic carbene (NHC)- and N-heterocycle-supported o-CH bond activation of the aryl substituents and the hydrogenation of a C-C double bond of the coordinated diene. In solution, these dimers exist as a mixture of isomers a (Im trans to N) and b (Im trans to Cl), which lie in a dynamic equilibrium. The treatment of 3-5 with Kacac (acac = acetylacetonate) yields isomers a (Im trans to N) and b (Im trans to O) of Ir{κ2- C, C-(C6H4-ImMe)}{κ2- C, N-(C6H4-isoqui)}(κ2- O, O-acac) (6a and 6b), Ir{κ2- C, C-(C6H4-ImMe)}{κ2- C, N-(C6H4-py)}(κ2- O, O-acac) (7a and 7b), and Ir{κ2- C, C-(C6H4-ImMe)}{κ2- C, N-(C6F2H4-py)}(κ2- O, O-acac) (8a and 8b), which were separated by column chromatography. The treatment of 6a with HX in acetone-water produces the protonation of the acac ligand and the formation of the bis(aquo) complex [Ir{κ2- C, C-(C6H4-ImMe)}{κ2- C, N-(C6H4-isoqui)}(H2O)2]X [X = BF4 (9a[BF4]), OTf (9a[OTf])]. The salt 9a[BF4] reacts with 2-(2-pinacolborylphenyl)-5-methylpyridine in the presence of 40 equiv of K3PO4 to afford Ir{κ2- C, C-(C6H4-ImMe)}{κ2- C, N-(C6H4-isoqui)}{κ2- C, N-(C6H4-Mepy)} (10a). Complexes 6a, 6b, 7a, 7b, 8a, 8b, and 10a are phosphorescent emitters (λem = 465-655 nm), which display short lifetimes in the range of 0.2-5.6 µs. They show high quantum yields both in doped poly(methyl methacrylate) films (0.34-0.87) and in 2-methyltetrahydrofuran at room temperature (0.40-0.93). From the point of view of their applicability to the fabrication of organic-light-emitting-diode devices, a notable improvement with regard to those containing two cyclometalated C,N ligands is achieved. The introduction of the cyclometalated aryl-NHC group allows one to reach a brightness of 1000 cd/m2 at a lower voltage and appears to give rise to higher luminous efficacy and power efficacy.

17.
Tetrahedron Lett ; 56(23): 3423-3427, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26034334

RESUMO

Daphnanes and tiglianes are diterpenes with a shared tricyclic 5-7-6 ring system. Many members exhibit significant biological activities often associated with protein kinase C signaling. Many of these natural products (~100) have a C6-C7 α-epoxide whose influence on biological activity is little studied. Using the more readily available phorbol ester PDBu as a test substrate, we report an efficient, and potentially general, α-epoxidation method based on a vanadium-catalyzed asymmetric epoxidation with bishydroxamic acid (BHA) ligands.

18.
J Med Chem ; 67(5): 3711-3726, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417040

RESUMO

Macrocycles have recognized therapeutic potential, but their limited cellular permeability can hinder their development as oral drugs. To better understand the structure-permeability relationship of heterocycle-containing, semipeptidic macrocycles, a library was synthesized. These compounds were created by developing two novel reactions described herein: the reduction of activated oximes by LiBH4 and the aqueous reductive mono-N-alkylation of aldehydes using catalytic SmI2 and stoichiometric Zn. The permeability of the macrocycles was evaluated through a parallel artificial membrane permeability assay (PAMPA), and the results indicated that macrocycles with a furan incorporated into the structure have better passive permeability than those with a pyrrole moiety. Compounds bearing a 2,5-disubstituted pyrrole (endo orientation) were shown to be implicated in intramolecular H-bonds, enhancing their permeability. This study highlighted the impact of heterocycles moieties in semipeptides, creating highly permeable macrocycles, thus showing promising avenues for passive diffusion of drugs beyond the rule-of-five chemical space.


Assuntos
Membranas Artificiais , Água , Permeabilidade , Permeabilidade da Membrana Celular , Difusão
19.
ChemMedChem ; 19(2): e202300458, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37864572

RESUMO

Human influenza viruses cause acute respiratory symptoms that can lead to death. Due to the emergence of antiviral drug-resistant strains, there is an urgent requirement for novel antiviral agents and innovative therapeutic strategies. Using the peptidomimetic ketobenzothiazole protease inhibitor RQAR-Kbt (IN-1, aka N-0100) as a starting point, we report how substituting P2 and P4 positions with natural and unnatural amino acids can modulate the inhibition potency toward matriptase, a prototypical type II transmembrane serine protease (TTSP) that acts as a priming protease for influenza viruses. We also introduced modifications of the peptidomimetics N-terminal groups, leading to significant improvements (from µM to nM, 60 times more potent than IN-1) in their ability to inhibit the replication of influenza H1N1 virus in the Calu-3 cell line derived from human lungs. The selectivity towards other proteases has been evaluated and explained using molecular modeling with a crystal structure recently obtained by our group. By targeting host cell TTSPs as a therapeutic approach, it may be possible to overcome the high mutational rate of influenza viruses and consequently prevent potential drug resistance.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Inibidores de Serina Proteinase/farmacologia , Vírus da Influenza A/fisiologia , Serina Proteases/metabolismo , Influenza Humana/tratamento farmacológico , Inibidores de Proteases/farmacologia , Replicação Viral
20.
Oncotarget ; 15: 313-325, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753413

RESUMO

The diheteroarylamide-based compound 1C8 and the aminothiazole carboxamide-related compound GPS167 inhibit the CLK kinases, and affect the proliferation of a broad range of cancer cell lines. A chemogenomic screen previously performed with GPS167 revealed that the depletion of components associated with mitotic spindle assembly altered sensitivity to GPS167. Here, a similar screen performed with 1C8 also established the impact of components involved in mitotic spindle assembly. Accordingly, transcriptome analyses of cells treated with 1C8 and GPS167 indicated that the expression and RNA splicing of transcripts encoding mitotic spindle assembly components were affected. The functional relevance of the microtubule connection was confirmed by showing that subtoxic concentrations of drugs affecting mitotic spindle assembly increased sensitivity to GPS167. 1C8 and GPS167 impacted the expression and splicing of transcripts in pathways relevant to tumor progression, including MYC targets and the epithelial mesenchymal transition (EMT). Finally, 1C8 and GPS167 altered the expression and alternative splicing of transcripts involved in the antiviral immune response. Consistent with this observation, depleting the double-stranded RNA sensor DHX33 suppressed GPS167-mediated cytotoxicity on HCT116 cells. Our study uncovered molecular mechanisms through which 1C8 and GPS167 affect cancer cell proliferation as well as processes critical for metastasis.


Assuntos
Proliferação de Células , Transição Epitelial-Mesenquimal , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tiazóis/farmacologia , Antivirais/farmacologia , Células HCT116 , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa