Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Stat Med ; 38(12): 2228-2247, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30672015

RESUMO

Using clinical data to model the medical decisions behind sequential treatment actions raises methodological challenges. Physicians often have access to many covariates that may be used when making sequential treatment decisions for individual patients. Statistical variable selection methods may help finding which of these variables are used for this decision in everyday practice. When the sample size is not large, Bayesian variable selection methods can address this setting and allow for expert information to be incorporated into prior distributions. Motivated by clinical practice data involving repeated dose adaptation for Irinotecan in colorectal metastatic cancer, we propose a modification of the stochastic search variable selection (SSVS) method, which we call weight-based SSVS (WBS). We use clinical relevance weights elicited from physician experts to construct prior distributions, with the goal to identify the most influential toxicities and other covariates used for dose adjustment. We evaluate and compare the WBS model performance to the Lasso and SSVS through an extensive simulation study. The simulations show that WBS has better performance and lower rates of false positives and false negatives than the other methods but depends strongly on the covariate weights.


Assuntos
Teorema de Bayes , Sistemas de Apoio a Decisões Clínicas , Neoplasias do Colo/tratamento farmacológico , Simulação por Computador , Humanos , Tamanho da Amostra , Processos Estocásticos
2.
BMC Med Res Methodol ; 16: 67, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250349

RESUMO

BACKGROUND: Multi-Arm Multi-Stage designs aim at comparing several new treatments to a common reference, in order to select or drop any treatment arm to move forward when such evidence already exists based on interim analyses. We redesigned a Bayesian adaptive design initially proposed for dose-finding, focusing our interest in the comparison of multiple experimental drugs to a control on a binary criterion measure. METHODS: We redesigned a phase II clinical trial that randomly allocates patients across three (one control and two experimental) treatment arms to assess dropping decision rules. We were interested in dropping any arm due to futility, either based on historical control rate (first rule) or comparison across arms (second rule), and in stopping experimental arm due to its ability to reach a sufficient response rate (third rule), using the difference of response probabilities in Bayes binomial trials between the treated and control as a measure of treatment benefit. Simulations were then conducted to investigate the decision operating characteristics under a variety of plausible scenarios, as a function of the decision thresholds. RESULTS: Our findings suggest that one experimental treatment was less efficient than the control and could have been dropped from the trial based on a sample of approximately 20 instead of 40 patients. In the simulation study, stopping decisions were reached sooner for the first rule than for the second rule, with close mean estimates of response rates and small bias. According to the decision threshold, the mean sample size to detect the required 0.15 absolute benefit ranged from 63 to 70 (rule 3) with false negative rates of less than 2 % (rule 1) up to 6 % (rule 2). In contrast, detecting a 0.15 inferiority in response rates required a sample size ranging on average from 23 to 35 (rules 1 and 2, respectively) with a false positive rate ranging from 3.6 to 0.6 % (rule 3). CONCLUSION: Adaptive trial design is a good way to improve clinical trials. It allows removing ineffective drugs and reducing the trial sample size, while maintaining unbiased estimates. Decision thresholds can be set according to predefined fixed error decision rates. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01342692 .


Assuntos
Azacitidina/uso terapêutico , Teorema de Bayes , Síndromes Mielodisplásicas/tratamento farmacológico , Projetos de Pesquisa , Tamanho da Amostra , Adulto , Quimioterapia Combinada , Inibidores Enzimáticos/uso terapêutico , Humanos , Ácido Valproico/uso terapêutico , Adulto Jovem
3.
Stat Methods Med Res ; 33(4): 574-588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446999

RESUMO

In preclinical investigations, for example, in in vitro, in vivo, and in silico studies, the pharmacokinetic, pharmacodynamic, and toxicological characteristics of a drug are evaluated before advancing to first-in-man trial. Usually, each study is analyzed independently and the human dose range does not leverage the knowledge gained from all studies. Taking into account all preclinical data through inferential procedures can be particularly interesting in obtaining a more precise and reliable starting dose and dose range. Our objective is to propose a Bayesian framework for multi-source data integration, customizable, and tailored to the specific research question. We focused on preclinical results extrapolated to humans, which allowed us to predict the quantities of interest (e.g. maximum tolerated dose, etc.) in humans. We build an approach, divided into four steps, based on a sequential parameter estimation for each study, extrapolation to human, commensurability checking between posterior distributions and final information merging to increase the precision of estimation. The new framework is evaluated via an extensive simulation study, based on a real-life example in oncology. Our approach allows us to better use all the information compared to a standard framework, reducing uncertainty in the predictions and potentially leading to a more efficient dose selection.


Assuntos
Pesquisa , Humanos , Teorema de Bayes , Simulação por Computador
4.
Pharmaceutics ; 13(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922017

RESUMO

The treatment of respiratory tract infections is threatened by the emergence of bacterial resistance. Immunomodulatory drugs, which enhance airway innate immune defenses, may improve therapeutic outcome. In this concept paper, we aim to highlight the utility of pharmacometrics and Bayesian inference in the development of immunomodulatory therapeutic agents as an adjunct to antibiotics in the context of pneumonia. For this, two case studies of translational modelling and simulation frameworks are introduced for these types of drugs up to clinical use. First, we evaluate the pharmacokinetic/pharmacodynamic relationship of an experimental combination of amoxicillin and a TLR4 agonist, monophosphoryl lipid A, by developing a pharmacometric model accounting for interaction and potential translation to humans. Capitalizing on this knowledge and associating clinical trial extrapolation and statistical modelling approaches, we then investigate the TLR5 agonist flagellin. The resulting workflow combines expert and prior knowledge on the compound with the in vitro and in vivo data generated during exploratory studies in order to construct high-dimensional models considering the pharmacokinetics and pharmacodynamics of the compound. This workflow can be used to refine preclinical experiments, estimate the best doses for human studies, and create an adaptive knowledge-based design for the next phases of clinical development.

5.
Stat Methods Med Res ; 29(2): 541-567, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30963815

RESUMO

BACKGROUND: Building tools to support personalized medicine needs to model medical decision-making. For this purpose, both expert and real world data provide a rich source of information. Currently, machine learning techniques are developing to select relevant variables for decision-making. Rather than using data-driven analysis alone, eliciting prior information from physicians related to their medical decision-making processes can be useful in variable selection. Our framework is electronic health records data on repeated dose adjustment of Irinotecan for the treatment of metastatic colorectal cancer. We propose a method that incorporates elicited expert weights associated with variables involved in dose reduction decisions into the Stochastic Search Variable Selection (SSVS), a Bayesian variable selection method, by using a power prior. METHODS: Clinician experts were first asked to provide numerical clinical relevance weights to express their beliefs about the importance of each variable in their medical decision making. Then, we modeled the link between repeated dose reduction, patient characteristics, and toxicities by assuming a logistic mixed-effects model. Simulated data were generated based on the elicited weights and combined with the observed dose reduction data via a power prior. We compared the Bayesian power prior-based SSVS performance to the usual SSVS in our case study, including a sensitivity analysis using the power prior parameter. RESULTS: The selected variables differ when using only expert knowledge, only the usual SSVS, or combining both. Our method enables one to select rare variables that may be missed using only the observed data and to discard variables that appear to be relevant based on the data but not relevant from the expert perspective. CONCLUSION: We introduce an innovative Bayesian variable selection method that adaptively combines elicited expert information and real world data. The method selects a set of variables relevant to model medical decision process.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Prova Pericial/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Tomada de Decisão Clínica , Relação Dose-Resposta a Droga , Registros Eletrônicos de Saúde , Feminino , Humanos , Irinotecano/administração & dosagem , Modelos Logísticos , Masculino , Metástase Neoplásica/tratamento farmacológico , Medicina de Precisão , Projetos de Pesquisa , Inibidores da Topoisomerase I/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa