RESUMO
We developed a high-dimensional neural network potential (NNP) to describe the structural and energetic properties of borophene deposited on silver. This NNP has the accuracy of density functional theory (DFT) calculations while achieving computational speedups of several orders of magnitude, allowing the study of extensive structures that may reveal intriguing moiré patterns or surface corrugations. We describe an efficient approach to constructing the training data set using an iterative technique known as the "adaptive learning approach". The developed NNP is able to produce, with excellent agreement, the structure, energy, and forces obtained at the DFT level. Finally, the calculated stability of various borophene polymorphs, including those not initially included in the training data set, shows better stabilization for ν â¼ 0.1 hole density, and in particular for the allotrope α (ν=1/9). The stability of borophene on the metal surface is shown to depend on its orientation, implying structural corrugation patterns that can be observed only from long-time simulations on extended systems. The NNP also demonstrates its ability to simulate vibrational densities of states and produce realistic structures with simulated STM images closely matching the experimental ones.
RESUMO
Vapor-phase infiltration (VPI), a technique derived from atomic layer deposition (ALD) and based on sequential self-limiting chemistry, is used to modify the stable microporous porphyrin-based metal-organic framework (MOF) MIL-173(Zr). VPI is an appealing approach to modifying MOFs by inserting reactants with atomic precision. The microporous nature and chemical stability of MIL-173 enable postsynthesis modification by VPI without MOF degradation even with extremely reactive precursors such as trimethylaluminum (TMA) and diethylzinc (DEZ). VPI proceeds through the diffusion of gaseous organometallic reactants TMA and DEZ inside the microporous framework, where they react with two kinds of chemical sites offered by the porphyrinic linker (phenolic and pyrrolic functions in the porphyrin core), without altering the crystallinity and permanent porosity of the MOF. 27Al NMR, UV-vis absorption, and IR spectroscopies are used to further characterize the modified material. Physisorption of both precursors is computationally simulated by grand canonical Monte Carlo methods and outlines the preferential adsorption sites. The impact of temperature, number of VPI cycles, and pulse length are investigated and show that aluminum and zinc are introduced in a saturating manner inside the MOF on both available reactive sites. The porosity prerequisite is outlined for VPI, which is proven to be much more effective than classical solution-based methods because it is solventless and fast, prevents workup steps, and allows reactions not possible by the classical solution approach.
RESUMO
Despite kerogen's importance as the organic backbone for hydrocarbon production from source rocks such as gas shale, the interplay between kerogen's chemistry, morphology and mechanics remains unexplored. As the environmental impact of shale gas rises, identifying functional relations between its geochemical, transport, elastic and fracture properties from realistic molecular models of kerogens becomes all the more important. Here, by using a hybrid experimental-simulation method, we propose a panel of realistic molecular models of mature and immature kerogens that provide a detailed picture of kerogen's nanostructure without considering the presence of clays and other minerals in shales. We probe the models' strengths and limitations, and show that they predict essential features amenable to experimental validation, including pore distribution, vibrational density of states and stiffness. We also show that kerogen's maturation, which manifests itself as an increase in the sp(2)/sp(3) hybridization ratio, entails a crossover from plastic-to-brittle rupture mechanisms.
RESUMO
We report an efficient atom-scale reconstruction method that consists of combining the Hybrid Reverse Monte Carlo algorithm (HRMC) with Molecular Dynamics (MD) in the framework of a simulated annealing technique. In the spirit of the experimentally constrained molecular relaxation technique [Biswas et al., Phys. Rev. B 69, 195207 (2004)], this modified procedure offers a refined strategy in the field of reconstruction techniques, with special interest for heterogeneous and disordered solids such as amorphous porous materials. While the HRMC method generates physical structures, thanks to the use of energy penalties, the combination with MD makes the method at least one order of magnitude faster than HRMC simulations to obtain structures of similar quality. Furthermore, in order to ensure the transferability of this technique, we provide rational arguments to select the various input parameters such as the relative weight ω of the energy penalty with respect to the structure optimization. By applying the method to disordered porous carbons, we show that adsorption properties provide data to test the global texture of the reconstructed sample but are only weakly sensitive to the presence of defects. In contrast, the vibrational properties such as the phonon density of states are found to be very sensitive to the local structure of the sample.
RESUMO
Angiogenesis is an essential part of the cardiac repair process after myocardial infarction, but its spatiotemporal dynamics remain to be fully deciphered.68Ga-NODAGA-Arg-Gly-Asp (RGD) is a PET tracer targeting αvß3 integrin expression, which is a marker of angiogenesis. Methods: In this prospective single-center trial, we aimed to monitor angiogenesis through myocardial integrin αvß3 expression in 20 patients with ST-segment elevation myocardial infarction (STEMI). In addition, the correlations between the expression levels of myocardial αvß3 integrin and the subsequent changes in 82Rb PET/CT parameters, including rest and stress myocardial blood flow (MBF), myocardial flow reserve (MFR), and wall motion abnormalities, were assessed. The patients underwent 68Ga-NODAGA-RGD PET/CT and rest and stress 82Rb-PET/CT at 1 wk, 1 mo, and 3 mo after STEMI. To assess 68Ga-NODAGA-RGD uptake, the summed rest 82Rb and 68Ga-NODAGA-RGD images were coregistered, and segmental SUVs were calculated (RGD SUV). Results: At 1 wk after STEMI, 19 participants (95%) presented increased 68Ga-NODAGA-RGD uptake in the infarcted myocardium. Seventeen participants completed the full imaging series. The values of the RGD SUV in the infarcted myocardium were stable 1 mo after STEMI (1 wk vs. 1 mo, 1.47 g/mL [interquartile range (IQR), 1.37-1.64 g/mL] vs. 1.47 g/mL [IQR, 1.30-1.66 g/mL]; P = 0.9), followed by a significant partial decrease at 3 mo (1.32 g/mL [IQR, 1.12-1.71 g/mL]; P = 0.011 vs. 1 wk and 0.018 vs. 1 mo). In segment-based analysis, positive correlations were found between RGD SUV at 1 wk and the subsequent changes in stress MBF (Spearman ρ: r = 0.17, P = 0.0033) and MFR (Spearman ρ: r = 0.31, P < 0.0001) at 1 mo. A negative correlation was found between RGD SUV at 1 wk and the subsequent changes in wall motion abnormalities at 3 mo (Spearman ρ: r = -0.12, P = 0.035). Conclusion: The present study found that αvß3 integrin expression is significantly increased in the infarcted myocardium 1 wk after STEMI. This expression remains stable after 1 mo and partially decreases after 3 mo. Initial αvß3 integrin expression at 1 wk is significantly weakly correlated with subsequent improvements in stress MBF, MFR, and wall motion analysis.
Assuntos
Circulação Coronária , Integrina alfaVbeta3 , Infarto do Miocárdio , Miocárdio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Idoso , Compostos Heterocíclicos com 1 Anel , Estudos Prospectivos , Oligopeptídeos/metabolismo , Radioisótopos de Rubídio , AcetatosRESUMO
Multiphasic scaffolds that combine different architectural, physical, and biological properties are the best option for the regeneration of complex tissues such as the periodontium. Current developed scaffolds generally lack architectural accuracy and rely on multistep manufacturing, which is difficult to implement for clinical applications. In this context, direct-writing electrospinning (DWE) represents a promising and rapid technique for developing thin 3D scaffolds with controlled architecture. The current study aimed to elaborate a biphasic scaffold using DWE based on two polycaprolactone solutions with interesting properties for bone and cement regeneration. One of the two scaffold parts contained hydroxyapatite nanoparticles (HAP) and the other contained the cementum protein 1 (CEMP1). After morphological characterizations, the elaborated scaffolds were assessed regarding periodontal ligament (PDL) cells in terms of cell proliferation, colonization, and mineralization ability. The results demonstrated that both HAP- and CEMP1-functionalized scaffolds were colonized by PDL cells and enhanced mineralization ability compared to unfunctionalized scaffolds, as revealed by alizarin red staining and OPN protein fluorescent expression. Taken together, the current data highlighted the potential of functional and organized scaffolds to stimulate bone and cementum regeneration. Moreover, DWE could be used to develop smart scaffolds with the ability to spatially control cellular orientation with suitable cellular activity at the micrometer scale, thereby enhancing periodontal and other complex tissue regeneration.
RESUMO
Owing to their complex morphology and surface, disordered nanoporous media possess a rich diffusion landscape leading to specific transport phenomena. The unique diffusion mechanisms in such solids stem from restricted pore relocation and ill-defined surface boundaries. While diffusion fundamentals in simple geometries are well-established, fluids in complex materials challenge existing frameworks. Here, we invoke the intermittent surface/pore diffusion formalism to map molecular dynamics onto random walk in disordered media. Our hierarchical strategy allows bridging microscopic/mesoscopic dynamics with parameters obtained from simple laws. The residence and relocation times - tA, tB - are shown to derive from pore size d and temperature-rescaled surface interaction ε/kBT. tA obeys a transition state theory with a barrier ~ε/kBT and a prefactor ~10-12 s corrected for pore diameter d. tB scales with d which is rationalized through a cutoff in the relocation first passage distribution. This approach provides a formalism to predict any fluid diffusion in complex media using parameters available to simple experiments.