Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 12(5): e1005572, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27149619

RESUMO

Human influenza viruses replicate almost exclusively in the respiratory tract, yet infected individuals may also develop gastrointestinal symptoms, such as vomiting and diarrhea. However, the molecular mechanisms remain incompletely defined. Using an influenza mouse model, we found that influenza pulmonary infection can significantly alter the intestinal microbiota profile through a mechanism dependent on type I interferons (IFN-Is). Notably, influenza-induced IFN-Is produced in the lungs promote the depletion of obligate anaerobic bacteria and the enrichment of Proteobacteria in the gut, leading to a "dysbiotic" microenvironment. Additionally, we provide evidence that IFN-Is induced in the lungs during influenza pulmonary infection inhibit the antimicrobial and inflammatory responses in the gut during Salmonella-induced colitis, further enhancing Salmonella intestinal colonization and systemic dissemination. Thus, our studies demonstrate a systemic role for IFN-Is in regulating the host immune response in the gut during Salmonella-induced colitis and in altering the intestinal microbial balance after influenza infection.


Assuntos
Microbioma Gastrointestinal/imunologia , Interferon Tipo I/imunologia , Infecções por Orthomyxoviridae/imunologia , Salmonelose Animal/imunologia , Animais , Coinfecção/imunologia , Coinfecção/microbiologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/complicações , Reação em Cadeia da Polimerase em Tempo Real , Salmonelose Animal/microbiologia
2.
Infect Immun ; 84(2): 386-94, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26573736

RESUMO

Candida albicans is a yeast-like pathogen and can cause life-threatening systemic candidiasis. Its cell surface is enriched with mannan that is resistant to complement activation. Previously, we developed the recombinant human IgG1 antimannan antibody M1g1. M1g1 was found to promote complement activation and phagocytosis and protect mice from systemic candidiasis. Here, we evaluate the influence of IgG subclass on antimannan antibody-mediated protection. Three IgG subclass variants of M1g1 were constructed: M1g2, M1g3, and M1g4. The IgG subclass identity for each variant was confirmed with DNA sequence and subclass-specific antibodies. These variants contain identical M1 Fabs and exhibited similar binding affinities for C. albicans yeast and purified mannan. Yeast cells and hyphae recovered from the kidney of antibody-treated mice with systemic candidiasis showed uniform binding of each variant, indicating constitutive expression of the M1 epitope and antibody opsonization in the kidney. All variants promoted deposition of both murine and human C3 onto the yeast cell surface, with M1g4 showing delayed activation, as determined by flow cytometry and immunofluorescence microscopy. M1g4-mediated complement activation was found to be associated with its M1 Fab that activates the alternative pathway in an Fc-independent manner. Treatment with each subclass variant extended the survival of mice with systemic candidiasis (P < 0.001). However, treatment with M1g1, M1g3, or M1g4, but not with M1g2, also reduced the kidney fungal burden (P < 0.001). Thus, the role of human antimannan antibody in host resistance to systemic candidiasis is influenced by its IgG subclass.


Assuntos
Candida albicans/imunologia , Candidíase Invasiva/imunologia , Candidíase Invasiva/prevenção & controle , Imunoglobulina G/administração & dosagem , Imunoglobulina G/imunologia , Rim/microbiologia , Mananas/imunologia , Animais , Anticorpos Antifúngicos/administração & dosagem , Anticorpos Antifúngicos/imunologia , Anticorpos Antifúngicos/uso terapêutico , Sítios de Ligação de Anticorpos , Candida albicans/isolamento & purificação , Candida albicans/ultraestrutura , Candidíase Invasiva/terapia , Ativação do Complemento , Complemento C3/imunologia , Complemento C3/metabolismo , Feminino , Humanos , Imunização Passiva , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/classificação , Imunoglobulina G/uso terapêutico , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
3.
Biol Psychiatry Glob Open Sci ; 3(3): 451-459, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519458

RESUMO

Background: Tuberous sclerosis complex is a genetic disorder associated with high rates of intellectual disability and autism. Mice with a heterozygous null mutation of the Tsc2 gene (Tsc2+/-) show deficits in hippocampal-dependent tasks and abnormal long-term potentiation (LTP) in the hippocampal CA1 region. Although previous studies focused on the role of neuronal deficits in the memory phenotypes of rodent models of tuberous sclerosis complex, the results presented here demonstrate a role for microglia in these deficits. Methods: To test the possible role of microglia and type I interferon in abnormal hippocampal-dependent memory and LTP of Tsc2+/- mice, we used field recordings in CA1 and the object place recognition (OPR) task. We used the colony stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia in Tsc2+/- mice and interferon alpha/beta receptor alpha chain null mutation (Ifnar1-/-) to manipulate a signaling pathway known to modulate microglia function. Results: Unexpectedly, we demonstrate that male, but not female, Tsc2+/- mice show OPR deficits. These deficits can be rescued by depletion of microglia and by the Ifnar1-/- mutation. In addition to rescuing OPR deficits, depletion of microglia also reversed abnormal LTP of the Tsc2+/- mice. Altogether, our results suggest that altered IFNAR1 signaling in microglia causes the abnormal LTP and OPR deficits of male Tsc2+/- mice. Conclusions: Microglia and IFNAR1 signaling have a key role in the hippocampal-dependent memory deficits and abnormal hippocampal LTP of Tsc2+/- male mice.

4.
Infect Immun ; 79(11): 4472-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875959

RESUMO

Candida albicans is a fungal pathogen that causes severe disseminated infections that can be lethal in immunocompromised patients. Genetic factors are known to alter the initial susceptibility to and severity of C. albicans infection. We developed a next-generation computational genetic mapping program with advanced features to identify genetic factors affecting survival in a murine genetic model of hematogenous C. albicans infection. This computational tool was used to analyze the median survival data after inbred mouse strains were infected with C. albicans, which provides a useful experimental model for identification of host susceptibility factors. The computational analysis indicated that genetic variation within early classical complement pathway components (C1q, C1r, and C1s) could affect survival. Consistent with the computational results, serum C1 binding to this pathogen was strongly affected by C1rs alleles, as was survival of chromosome substitution strains. These results led to a combinatorial, conditional genetic model, involving an interaction between C5 and C1r/s alleles, which accurately predicted survival after infection. Beyond applicability to infectious disease, this information could increase our understanding of the genetic factors affecting susceptibility to autoimmune and neurodegenerative diseases.


Assuntos
Alelos , Candidíase/imunologia , Mapeamento Cromossômico , Ativação do Complemento/genética , Biologia Computacional/métodos , Predisposição Genética para Doença , Animais , Candidíase/genética , Candidíase/mortalidade , Haplótipos , Camundongos , Camundongos Endogâmicos , Polimorfismo de Nucleotídeo Único
5.
Sci Adv ; 7(38): eabf2073, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533985

RESUMO

There is growing evidence that prenatal immune activation contributes to neuropsychiatric disorders. Here, we show that early postnatal immune activation resulted in profound impairments in social behavior, including in social memory in adult male mice heterozygous for a gene responsible for tuberous sclerosis complex (Tsc2+/−), a genetic disorder with high prevalence of autism. Early postnatal immune activation did not affect either wild-type or female Tsc2+/− mice. We demonstrate that these memory deficits are caused by abnormal mammalian target of rapamycin­dependent interferon signaling and impairments in microglia function. By mining the medical records of more than 3 million children followed from birth, we show that the prevalence of hospitalizations due to infections in males (but not in females) is associated with future development of autism spectrum disorders (ASD). Together, our results suggest the importance of synergistic interactions between strong early postnatal immune activation and mutations associated with ASD.

6.
Infect Immun ; 78(3): 1250-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20028806

RESUMO

The complement system is important for host resistance to hematogenously disseminated candidiasis. However, modulation of complement activation by cell wall components of Candida albicans has not been characterized. Although intact yeast display mannan on the surface, glucan, typically located in the interior, becomes exposed during C. albicans infection. We show here the distinct effects of mannan and glucan on complement activation and opsonophagocytosis. Previous studies showed that intact cells are resistant to initiation of complement activation through the alternative pathway, and antimannan antibody reverses this resistance via an Fc-independent mechanism. The present study shows that this mannan-dependent resistance can be overcome by periodate-borohydride conversion of mannose polysaccharides to polyalcohols; cells treated with periodate-borohydride initiate the alternative pathway without the need for antibody. These observations identify an inhibitory role for intact mannan in complement activation. Next, removal of the surface-displayed mannan by acid treatment of periodate-borohydride cells exposes glucan. Glucan-displaying cells or purified beta-glucan initiate the alternative pathway when incubated with the purified proteins of the alternative pathway alone, suggesting that C. albicans glucan is a natural activator of the alternative pathway. Finally, ingestion of mannan-displaying cells by human neutrophils requires anti-mannan antibody, whereas ingestion of glucan-displaying cells requires complement. These results demonstrate a contrasting requirement of natural antibody and complement for opsonophagocytosis of C. albicans cells displaying mannan or glucan. Thus, differential surface expression of mannan and glucan may influence recognition of C. albicans by the complement system.


Assuntos
Candida albicans/imunologia , Ativação do Complemento/efeitos dos fármacos , Complemento C3/metabolismo , Glucanos/farmacologia , Fatores Imunológicos/farmacologia , Mananas/farmacologia , Via Alternativa do Complemento/efeitos dos fármacos , Humanos , Neutrófilos/imunologia , Proteínas Opsonizantes/metabolismo , Fagocitose/efeitos dos fármacos , Ligação Proteica
7.
Mol Immunol ; 46(3): 473-80, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19038459

RESUMO

The complement system has an important role in host resistance to systemic candidiasis but regulation of complement activation by Candida albicans remains poorly defined. Previous studies have identified a requirement for naturally occurring antimannan IgG antibody in initiation of C3 opsonization of C. albicans through either the classical or alternative pathway. This study characterized antibody-dependent initiation of the alternative pathway using the recombinant human monoclonal antimannan Fab fragment M1 and its full-length IgG1 antibody M1g1. Kinetic analysis of C3b deposition onto C. albicans with flow cytometry demonstrated the ability of M1g1 to restore the activity of either the classical or alternative pathway to the yeast-absorbed normal human serum, but the Fc-free M1 Fab restored only the activity of the alternative pathway. This Fc-independent, antimannan Fab-mediated C3 deposition through the alternative pathway was also observed in a serum-free assay containing the six alternative pathway proteins and in C1q- or C2-depleted serum but not in factor B-depleted serum. M1- or M1g1-dependent alternative pathway initiation of C3b deposition occurred in an asynchronous manner at discrete sites that expanded to cover the entire cell surface over time as revealed with immunofluorescence microscopy, in contrast to a uniform appearance of initial C3 deposition through the classical pathway. Furthermore, antimannan Fab M1 promoted the assembly of the alternative pathway convertase on the cell surface seen as colocalization of C3 and factor B with immunofluorescence microscopy. Thus, human antimannan antibody has a distinct Fc-independent effector function in regulation of C3 deposition to C. albicans.


Assuntos
Anticorpos/imunologia , Candida albicans/imunologia , Complemento C3/imunologia , Via Alternativa do Complemento/imunologia , Mananas/imunologia , Receptores Fc/imunologia , Candida albicans/citologia , Ativação do Complemento/imunologia , Convertases de Complemento C3-C5/imunologia , Via Clássica do Complemento/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Cinética , Proteínas Recombinantes/imunologia
8.
Radiat Res ; 191(4): 323-334, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30730284

RESUMO

Intensive research is underway to find new agents that can successfully mitigate the acute effects of radiation exposure. This is primarily in response to potential counterthreats of radiological terrorism and nuclear accidents but there is some hope that they might also be of value for cancer patients treated with radiation therapy. Research into mitigation countermeasures typically employs classic animal models of acute radiation syndromes (ARS) that develop after whole-body irradiation (WBI). While agents are available that successfully mitigate ARS when given after radiation exposure, their success raises questions as to whether they simply delay lethality or unmask potentially lethal radiation pathologies that may appear later in time. Life shortening is a well-known consequence of WBI in humans and experimental animals, but it is not often examined in a mitigation setting and its causes, other than cancer, are not well-defined. This is in large part because delayed effects of acute radiation exposure (DEARE) do not follow the strict time-dose phenomena associated with ARS and present as a diverse range of symptoms and pathologies with low mortality rates that can be evaluated only with the use of large cohorts of subjects, as in this study. Here, we describe chronically increased mortality rates up to 660 days in large numbers of mice given LD70/30 doses of WBI. Systemic myeloid cell activation after WBI persists in some mice and is associated with late immunophenotypic changes and hematopoietic imbalance. Histopathological changes are largely of a chronic inflammatory nature and variable incidence, as are the clinical symptoms, including late diarrhea that correlates temporally with changes in the content of the microbiome. We also describe the acute and long-term consequences of mitigating hematopoietic ARS (H-ARS) lethality after LD70/30 doses of WBI in multiple cohorts of mice treated uniformly with radiation mitigators that have a common 4-nitro-phenylsulfonamide (NPS) pharmacophore. Effective NPS mitigators dramatically decrease ARS mortality. There is slightly increased subacute mortality, but the rate of late mortalities is slowed, allowing some mice to live a normal life span, which is not the case for WBI controls. The study has broad relevance to radiation late effects and their potential mitigation and epitomizes the complex interaction between radiation-damaged tissues and immune homeostasis.


Assuntos
Síndrome Aguda da Radiação/imunologia , Síndrome Aguda da Radiação/prevenção & controle , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/efeitos da radiação , Protetores contra Radiação/farmacologia , Síndrome Aguda da Radiação/microbiologia , Síndrome Aguda da Radiação/mortalidade , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Coração/efeitos dos fármacos , Coração/efeitos da radiação , Masculino , Camundongos , Neoplasias Induzidas por Radiação/imunologia , Neoplasias Induzidas por Radiação/microbiologia , Neoplasias Induzidas por Radiação/mortalidade , Neoplasias Induzidas por Radiação/prevenção & controle , Sulfonamidas/farmacologia , Análise de Sobrevida
9.
PLoS One ; 12(7): e0181577, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732024

RESUMO

Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis. The lead compound also mitigates against death after local abdominal irradiation and after local thoracic irradiation (LTI) in models of subacute radiation pneumonitis and late radiation fibrosis. Mitigation of hARS is through activation of radiation-induced CD11b+Ly6G+Ly6C+ immature myeloid cells. This is consistent with the notion that myeloerythroid-restricted progenitors protect against WBI-induced lethality and extends the possible involvement of the myeloid lineage in radiation effects. The lead compound was active if given to mice before or after WBI and had some anti-tumor action, suggesting that these compounds may find broader applications to cancer radiation therapy.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Piperazinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/efeitos da radiação
10.
Cell Host Microbe ; 19(6): 760-9, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27281568

RESUMO

Type I interferons (IFNs) are pleiotropic cytokines well recognized for their role in the induction of a potent antiviral gene program essential for host defense against viruses. They also modulate innate and adaptive immune responses. However, the role of type I IFNs in host defense against bacterial infections is enigmatic. Depending on the bacterium, they exert seemingly opposite and capricious functions. In this review, we summarize the effect of type I IFNs on specific bacterial infections and highlight the effector mechanisms regulated by type I IFNs in an attempt to elucidate new avenues to understanding their role.


Assuntos
Infecções Bacterianas/imunologia , Interferon Tipo I/imunologia , Imunidade Adaptativa , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Citocinas/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/farmacologia , Interferon gama/imunologia , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa