Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 183(4): 1103-1116.e20, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098772

RESUMO

Cell differentiation and function are regulated across multiple layers of gene regulation, including modulation of gene expression by changes in chromatin accessibility. However, differentiation is an asynchronous process precluding a temporal understanding of regulatory events leading to cell fate commitment. Here we developed simultaneous high-throughput ATAC and RNA expression with sequencing (SHARE-seq), a highly scalable approach for measurement of chromatin accessibility and gene expression in the same single cell, applicable to different tissues. Using 34,774 joint profiles from mouse skin, we develop a computational strategy to identify cis-regulatory interactions and define domains of regulatory chromatin (DORCs) that significantly overlap with super-enhancers. During lineage commitment, chromatin accessibility at DORCs precedes gene expression, suggesting that changes in chromatin accessibility may prime cells for lineage commitment. We computationally infer chromatin potential as a quantitative measure of chromatin lineage-priming and use it to predict cell fate outcomes. SHARE-seq is an extensible platform to study regulatory circuitry across diverse cells in tissues.


Assuntos
Cromatina/metabolismo , Perfilação da Expressão Gênica , RNA/genética , Análise de Célula Única , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/genética , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , RNA/metabolismo
2.
Cell ; 176(6): 1325-1339.e22, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827679

RESUMO

Lineage tracing provides key insights into the fate of individual cells in complex organisms. Although effective genetic labeling approaches are available in model systems, in humans, most approaches require detection of nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information. Here, we show that somatic mutations in mtDNA can be tracked by single-cell RNA or assay for transposase accessible chromatin (ATAC) sequencing. We leverage somatic mtDNA mutations as natural genetic barcodes and demonstrate their utility as highly accurate clonal markers to infer cellular relationships. We track native human cells both in vitro and in vivo and relate clonal dynamics to gene expression and chromatin accessibility. Our approach should allow clonal tracking at a 1,000-fold greater scale than with nuclear genome sequencing, with simultaneous information on cell state, opening the way to chart cellular dynamics in human health and disease.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Sequência de Bases , Linhagem da Célula , Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Genômica/métodos , Células HEK293 , Células-Tronco Hematopoéticas/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Análise de Célula Única , Transposases
3.
Mol Psychiatry ; 27(5): 2602-2618, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246635

RESUMO

A hallmark of the anterior cingulate cortex (ACC) is its functional heterogeneity. Functional and imaging studies revealed its importance in the encoding of anxiety-related and social stimuli, but it is unknown how microcircuits within the ACC encode these distinct stimuli. One type of inhibitory interneuron, which is positive for vasoactive intestinal peptide (VIP), is known to modulate the activity of pyramidal cells in local microcircuits, but it is unknown whether VIP cells in the ACC (VIPACC) are engaged by particular contexts or stimuli. Additionally, recent studies demonstrated that neuronal representations in other cortical areas can change over time at the level of the individual neuron. However, it is not known whether stimulus representations in the ACC remain stable over time. Using in vivo Ca2+ imaging and miniscopes in freely behaving mice to monitor neuronal activity with cellular resolution, we identified individual VIPACC that preferentially activated to distinct stimuli across diverse tasks. Importantly, although the population-level activity of the VIPACC remained stable across trials, the stimulus-selectivity of individual interneurons changed rapidly. These findings demonstrate marked functional heterogeneity and instability within interneuron populations in the ACC. This work contributes to our understanding of how the cortex encodes information across diverse contexts and provides insight into the complexity of neural processes involved in anxiety and social behavior.


Assuntos
Giro do Cíngulo , Peptídeo Intestinal Vasoativo , Animais , Giro do Cíngulo/metabolismo , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Células Piramidais/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
4.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38328248

RESUMO

Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement dysregulation - a prevalent locus of brain disease etiology - in PV cells may drive disease pathogenesis, we have developed a transgenic mouse line that permits cell-type specific overexpression of the schizophrenia-associated complement component 4 (C4) gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific behavioral alterations and concomitant deficits in synaptic connectivity and excitability of PV cells of the prefrontal cortex. Using a computational network, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that C4 perturbations in fast-spiking neurons are more harmful to brain function than pan-neuronal alterations. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.

5.
STAR Protoc ; 4(4): 102707, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948187

RESUMO

Advances in super-resolution imaging enable us to delve into its intricate structural and functional complexities with unprecedented detail. Here, we present a pipeline to visualize and analyze the nanoscale organization of cortical layer 1 apical dendritic spines in the mouse prefrontal cortex. We describe steps for brain slice preparation, immunostaining, stimulated emission depletion super-resolution microscopy, and data analysis using the Imaris software package. This protocol allows the study of physiologically relevant brain circuits implicated in neuropsychiatric disorders.


Assuntos
Dendritos , Microscopia , Camundongos , Animais , Microscopia/métodos , Encéfalo/diagnóstico por imagem , Sistema Nervoso Central , Sinapses
6.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-38014001

RESUMO

During development, activation of the complement pathway, an extracellular proteolytic cascade, results in microglia-dependent synaptic elimination via complement receptor 3 (CR3). Here, we report that decreased connectivity caused by overexpression of C4 (C4-OE), a schizophrenia-associated gene, is CR3 independent. Instead, C4-OE triggers GluR1 degradation through an intracellular mechanism involving endosomal trafficking protein SNX27, resulting in pathological synaptic loss. Moreover, the connectivity deficits associated with C4-OE were rescued by increasing levels of SNX27, linking excessive complement activity to an intracellular endolysosomal recycling pathway affecting synapses.

7.
Cancer Cell ; 38(2): 212-228.e13, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32707078

RESUMO

Regulatory networks that maintain functional, differentiated cell states are often dysregulated in tumor development. Here, we use single-cell epigenomics to profile chromatin state transitions in a mouse model of lung adenocarcinoma (LUAD). We identify an epigenomic continuum representing loss of cellular identity and progression toward a metastatic state. We define co-accessible regulatory programs and infer key activating and repressive chromatin regulators of these cell states. Among these co-accessibility programs, we identify a pre-metastatic transition, characterized by activation of RUNX transcription factors, which mediates extracellular matrix remodeling to promote metastasis and is predictive of survival across human LUAD patients. Together, these results demonstrate the power of single-cell epigenomics to identify regulatory programs to uncover mechanisms and key biomarkers of tumor progression.


Assuntos
Adenocarcinoma/genética , Modelos Animais de Doenças , Epigenômica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/genética , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa