RESUMO
High-grade ovarian cancer (HGOC) is the leading cause of mortality from gynecological malignancies, because of diagnosis at a metastatic stage. Current screening options fail to improve mortality because of the absence of early-stage-specific biomarkers. We postulated that a liquid biopsy, such as utero-tubal lavage (UtL), may identify localized lesions better than systemic approaches of serum/plasma analysis. Further, while mutation-based assays are challenged by the rarity of tumor DNA within nonmutated DNA, analyzing the proteomic profile, is expected to enable earlier detection, as it reveals perturbations in both the tumor as well as in its microenvironment. To attain deep proteomic coverage and overcome the high dynamic range of this body fluid, we applied our method for microvesicle proteomics to the UtL samples. Liquid biopsies from HGOC patients (n = 49) and controls (n = 127) were divided into a discovery and validation sets. Data-dependent analysis of the samples on the Q-Exactive mass spectrometer provided depth of 8578 UtL proteins in total, and on average â¼3000 proteins per sample. We used support vector machine algorithms for sample classification, and crossed three feature-selection algorithms, to construct and validate a 9-protein classifier with 70% sensitivity and 76.2% specificity. The signature correctly identified all Stage I lesions. These results demonstrate the potential power of microvesicle-based proteomic biomarkers for early cancer diagnosis.
Assuntos
Micropartículas Derivadas de Células/metabolismo , Detecção Precoce de Câncer , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Proteômica/métodos , Útero/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Biópsia Líquida , Gradação de Tumores , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/genética , Reprodutibilidade dos TestesRESUMO
The fallopian tube secretory epithelial cells (FTSECs) are the cell-of-origin of most high-grade serous ovarian carcinomas (HGSOC). FTSECs are repeatedly exposed to inflammation induced by follicular fluid (FF) that is released with every ovulation cycle throughout a woman's reproductive years. Uninterrupted ovulation cycles are an established risk factor for HGSOC. Stimuli present in the FF induce an inflammatory environment which may cause DNA damage eventually leading to serous tumorigenesis. With the aim of elucidating possible mechanistic pathways, we established an 'ex vivo persistent ovulation model' mimicking the repeated exposure of human benign fallopian tube epithelium (FTE) to FF. We performed mass spectrometry analysis of the secretome of the ex vivo cultures as well as confirmatory targeted expressional and functional analyses. We demonstrated activation of the NF-κB pathway and upregulation of miR-155 following short-term exposure of FTE to human FF. Increased expression of miR-155 was also detected in primary HGSOC tumors compared with benign primary human FTE and corresponded with changes in the expression of miR-155 target genes. The phenotype of miR-155 overexpression in FTSEC cell line is of increased migratory and altered adhesion capacities. Overall, activation of the NF-κB-miR-155 axis in FTE may represent a possible link between ovulation-induced inflammation, DNA damage, and transcriptional changes that may eventually lead to serious carcinogenesis.
Assuntos
Biomarcadores Tumorais/metabolismo , Tubas Uterinas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , NF-kappa B/metabolismo , Neoplasias Ovarianas/patologia , Ovulação , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Tubas Uterinas/metabolismo , Feminino , Líquido Folicular/metabolismo , Humanos , Pessoa de Meia-Idade , NF-kappa B/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , Células Tumorais CultivadasRESUMO
We present here a new, classification-based screening method for anti-cancer botanical combinations. Using this method, we discovered that the combination of Astragalus membranaceus and Vaccaria hispanica (AV) has strong synergic anti-proliferative and killing effects on cancer cells. We showed that AV induces the hyper activation of proliferation and survival pathways (Akt and ERK1/2) and strongly downregulates the cell cycle control proteins p21 and p27. Moreover, FACS analyses revealed that AV induces accumulation of cells in G2/M phase, supported by accumulation of cyclin A. Taken together, our results suggest that AV interferes with the cell cycle in cancer cells, leading to accumulation in G2/M and apoptosis. Further studies are needed to validate the generalizability of the anti-cancer effect of the AV combination, to fully understand its mechanism of action and to evaluate its potential as a new anti-cancer treatment.
RESUMO
Background: Previous studies in locally advanced esophageal cancer (LAEC) suggested that a change in the tumor's metabolic response, i.e., decrease of its interim 18F-FDG uptake compared with baseline, may predict histopathological response. We evaluated the possible predictive correlation between various PET-CT and histopathological parameters following a neoadjuvant biological-containing chemoradiotherapy (CRT) regimen. Methods: Patients with resectable LAEC received neoadjuvant cisplatin/5-fluorouracil-based CRT and cetuximab following one cycle of induction chemotherapy and cetuximab. Changes in maximum and mean standardized uptake values (ΔSUV-max and ΔSUV-mean, respectively) and metabolic tumor volume (ΔMTV), measured by PET-CT at baseline and 2 weeks after the onset of treatment, were compared with histopathological findings at surgery. Histopathological response was defined by tumor regression grade (TRG), pathological complete response (pCR) and microscopic or macroscopic residual disease (RD). Results: Of 18 patients, 13 (72%) with adenocarcinoma (AC) and 5 (28%) with squamous cell carcinoma (SCC), were included. None of the changes in the parameters of PET was associated with pCR; only ΔSUV-mean was associated with TRG in the AC cohort. In contrast, both ΔSUV-mean% and ΔSUV-max% were significantly associated with RD, both in the whole cohort and in the AC cohort. Changes in FDG-uptake predicted RD2 at surgery: only patients with less than 13% decrease in SUV-mean% or less than 29% decrease in SUV-max% had RD2, while all patients with RD0 or RD1 had greater reductions [100% specificity and 100% positive predictive value (PPV)]. Conclusions: Changes in ΔSUV-max and ΔSUV-mean after two weeks of onset of cetuximab-based neoadjuvant chemotherapy for LAEC may predict macroscopic RD but not TRG or pCR at surgery.
RESUMO
In recent years, the notion that ovarian carcinoma results from ovulation-induced inflammation of the fallopian tube epithelial cells (FTECs) has gained evidence. However, the mechanistic pathway for this process has not been revealed yet. In the current study, we propose the mutator protein activation-induced cytidine deaminase (AID) as a link between ovulation-induced inflammation in FTECs and genotoxic damage leading to ovarian carcinogenesis. We show that AID, previously shown to be functional only in B lymphocytes, is expressed in FTECs under physiological conditions, and is induced in vitro upon ovulatory-like stimulation and in vivo in carcinoma-associated FTECs. We also report that AID activity results in epigenetic, genetic and genomic damage in FTECs. Overall, our data provides new insights into the etiology of ovarian carcinogenesis and may set the ground for innovative approaches aimed at prevention and early detection.
Assuntos
Carcinogênese/genética , Citidina Desaminase/biossíntese , Inflamação/genética , Neoplasias Ovarianas/genética , Linfócitos B/metabolismo , Linfócitos B/patologia , Citidina Desaminase/genética , Dano ao DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/complicações , Inflamação/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/patologia , Ovulação/genética , Ovulação/metabolismoRESUMO
BACKGROUND: Genetic variants located at 15q25, including those in the cholinergic receptor nicotinic cluster (CHRNA5) have been implicated in both lung cancer risk and nicotine dependence in recent genome-wide association studies. Among these variants, a 22-bp insertion/deletion, rs3841324 showed the strongest association with CHRNA5 mRNA expression levels. However the influence of rs3841324 on lung cancer risk has not been studied in depth. METHODS: We have, therefore, evaluated the association of rs3841324 genotypes with lung cancer risk in a case-control study of 624 Caucasian subjects with lung cancer and 766 age- and sex-matched cancer-free Caucasian controls. We also evaluated the joint effects of rs3841324 with single-nucleotide polymorphisms (SNP) rs16969968 and rs8034191 in the 15q25 region that have been consistently implicated in lung cancer risk. RESULTS: We found that the homozygous genotype with both short alleles (SS) of rs3841324 was associated with a decreased lung cancer risk in female ever smokers relative to the homozygous wild-type (LL) and heterozygous (LS) genotypes combined in a recessive model [OR(adjusted) = 0.55, 95% confidence interval (CI), 0.31-0.89, P = 0.0168]. There was no evidence for a sex difference in the association between this variant and cigarettes smoked per day (CPD). Diplotype analysis of rs3841324 with either rs16969968 or rs8034191 showed that these polymorphisms influenced the lung cancer risk independently. CONCLUSIONS AND IMPACT: This study has shown a sex difference in the association between the 15q25 variant rs3841324 and lung cancers. Further research is warranted to elucidate the mechanisms underlying these observations.