Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 184(26): 6326-6343.e32, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34879231

RESUMO

Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.


Assuntos
Neurônios Receptores Olfatórios/metabolismo , Sensação/genética , Transcrição Gênica , Animais , Encéfalo/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Odorantes , Bulbo Olfatório/metabolismo , Receptores Odorantes/metabolismo , Transcriptoma/genética
2.
Physiol Rev ; 103(4): 2759-2766, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342077

RESUMO

Anosmia, the loss of the sense of smell, is one of the main neurological manifestations of COVID-19. Although the SARS-CoV-2 virus targets the nasal olfactory epithelium, current evidence suggests that neuronal infection is extremely rare in both the olfactory periphery and the brain, prompting the need for mechanistic models that can explain the widespread anosmia in COVID-19 patients. Starting from work identifying the non-neuronal cell types that are infected by SARS-CoV-2 in the olfactory system, we review the effects of infection of these supportive cells in the olfactory epithelium and in the brain and posit the downstream mechanisms through which sense of smell is impaired in COVID-19 patients. We propose that indirect mechanisms contribute to altered olfactory system function in COVID-19-associated anosmia, as opposed to neuronal infection or neuroinvasion into the brain. Such indirect mechanisms include tissue damage, inflammatory responses through immune cell infiltration or systemic circulation of cytokines, and downregulation of odorant receptor genes in olfactory sensory neurons in response to local and systemic signals. We also highlight key unresolved questions raised by recent findings.


Assuntos
Anosmia , COVID-19 , Anosmia/virologia , Humanos , COVID-19/complicações , Neurônios Receptores Olfatórios/fisiologia , Animais , SARS-CoV-2
3.
Nature ; 614(7946): 108-117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653449

RESUMO

Spontaneous animal behaviour is built from action modules that are concatenated by the brain into sequences1,2. However, the neural mechanisms that guide the composition of naturalistic, self-motivated behaviour remain unknown. Here we show that dopamine systematically fluctuates in the dorsolateral striatum (DLS) as mice spontaneously express sub-second behavioural modules, despite the absence of task structure, sensory cues or exogenous reward. Photometric recordings and calibrated closed-loop optogenetic manipulations during open field behaviour demonstrate that DLS dopamine fluctuations increase sequence variation over seconds, reinforce the use of associated behavioural modules over minutes, and modulate the vigour with which modules are expressed, without directly influencing movement initiation or moment-to-moment kinematics. Although the reinforcing effects of optogenetic DLS dopamine manipulations vary across behavioural modules and individual mice, these differences are well predicted by observed variation in the relationships between endogenous dopamine and module use. Consistent with the possibility that DLS dopamine fluctuations act as a teaching signal, mice build sequences during exploration as if to maximize dopamine. Together, these findings suggest a model in which the same circuits and computations that govern action choices in structured tasks have a key role in sculpting the content of unconstrained, high-dimensional, spontaneous behaviour.


Assuntos
Comportamento Animal , Reforço Psicológico , Recompensa , Animais , Camundongos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Sinais (Psicologia) , Optogenética , Fotometria
4.
Annu Rev Neurosci ; 43: 277-295, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32640927

RESUMO

Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Olfato/fisiologia , Animais , Humanos , Odorantes
5.
Nature ; 584(7822): E38, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32782391

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 583(7815): 253-258, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612230

RESUMO

The cortex organizes sensory information to enable discrimination and generalization1-4. As systematic representations of chemical odour space have not yet been described in the olfactory cortex, it remains unclear how odour relationships are encoded to place chemically distinct but similar odours, such as lemon and orange, into perceptual categories, such as citrus5-7. Here, by combining chemoinformatics and multiphoton imaging in the mouse, we show that both the piriform cortex and its sensory inputs from the olfactory bulb represent chemical odour relationships through correlated patterns of activity. However, cortical odour codes differ from those in the bulb: cortex more strongly clusters together representations for related odours, selectively rewrites pairwise odour relationships, and better matches odour perception. The bulb-to-cortex transformation depends on the associative network originating within the piriform cortex, and can be reshaped by passive odour experience. Thus, cortex actively builds a structured representation of chemical odour space that highlights odour relationships; this representation is similar across individuals but remains plastic, suggesting a means through which the olfactory system can assign related odour cues to common and yet personalized percepts.


Assuntos
Odorantes/análise , Córtex Olfatório/anatomia & histologia , Córtex Olfatório/fisiologia , Condutos Olfatórios , Compostos Orgânicos/análise , Compostos Orgânicos/química , Animais , Masculino , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/citologia , Percepção Olfatória/fisiologia , Olfato
7.
Nature ; 564(7735): 213-218, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518859

RESUMO

Although the hippocampus is known to be important for declarative memory, it is less clear how hippocampal output regulates motivated behaviours, such as social aggression. Here we report that pyramidal neurons in the CA2 region of the hippocampus, which are important for social memory, promote social aggression in mice. This action depends on output from CA2 to the lateral septum, which is selectively enhanced immediately before an attack. Activation of the lateral septum by CA2 recruits a circuit that disinhibits a subnucleus of the ventromedial hypothalamus that is known to trigger attack. The social hormone arginine vasopressin enhances social aggression by acting on arginine vasopressin 1b receptors on CA2 presynaptic terminals in the lateral septum to facilitate excitatory synaptic transmission. In this manner, release of arginine vasopressin in the lateral septum, driven by an animal's internal state, may serve as a modulatory control that determines whether CA2 activity leads to declarative memory of a social encounter and/or promotes motivated social aggression.


Assuntos
Agressão/fisiologia , Região CA2 Hipocampal/citologia , Região CA2 Hipocampal/fisiologia , Inibição Neural , Vias Neurais/fisiologia , Núcleos Septais/citologia , Núcleos Septais/fisiologia , Comportamento Social , Animais , Arginina Vasopressina/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Motivação , Terminações Pré-Sinápticas/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Células Piramidais/metabolismo , Receptores de Vasopressinas/metabolismo , Transmissão Sináptica , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/fisiologia
8.
J Neurosci ; 41(39): 8103-8110, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34385360

RESUMO

Entorhinal cortex neurons make monosynaptic connections onto distal apical dendrites of CA1 and CA2 pyramidal neurons through the perforant path (PP) projection. Previous studies show that differences in dendritic properties and synaptic input density enable the PP inputs to produce a much stronger excitation of CA2 compared with CA1 pyramidal neurons. Here, using mice of both sexes, we report that the difference in PP efficacy varies substantially as a function of presynaptic firing rate. Although a single PP stimulus evokes a 5- to 6-fold greater EPSP in CA2 compared with CA1, a brief high-frequency train of PP stimuli evokes a strongly facilitating postsynaptic response in CA1, with relatively little change in CA2. Furthermore, we demonstrate that blockade of NMDARs significantly reduces strong temporal summation in CA1 but has little impact on that in CA2. As a result of the differences in the frequency- and NMDAR-dependent temporal summation, naturalistic patterns of presynaptic activity evoke CA1 and CA2 responses with distinct dynamics, differentially tuning CA1 and CA2 responses to bursts of presynaptic firing versus single presynaptic spikes, respectively.SIGNIFICANCE STATEMENT Recent studies have demonstrated that abundant entorhinal cortical innervation and efficient dendritic propagation enable hippocampal CA2 pyramidal neurons to produce robust excitation evoked by single cortical stimuli, compared with CA1. Here we uncovered, unexpectedly, that the difference in efficacy of cortical excitation varies substantially as a function of presynaptic firing rate. A burst of stimuli evokes a strongly facilitating response in CA1, but not in CA2. As a result, the postsynaptic response of CA1 and CA2 to presynaptic naturalistic firing displays contrasting temporal dynamics, which depends on the activation of NMDARs. Thus, whereas CA2 responds to single stimuli, CA1 is selectively recruited by bursts of cortical input.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA2 Hipocampal/fisiologia , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA2 Hipocampal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-B/farmacologia , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Sinapses/efeitos dos fármacos
9.
J Neurophysiol ; 123(3): 980-992, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31967926

RESUMO

The population activity of CA1 pyramidal neurons (PNs) segregates along anatomical axes with different behaviors, suggesting that CA1 PNs are functionally subspecialized based on somatic location. In dorsal CA1, spatial encoding is biased toward CA2 (CA1c) and in deep layers of the radial axis. In contrast, nonspatial coding peaks toward subiculum (CA1a) and in superficial layers. While preferential innervation by spatial vs. nonspatial input from entorhinal cortex (EC) may contribute to this specialization, it cannot fully explain the range of in vivo responses. Differences in intrinsic properties thus may play a critical role in modulating such synaptic input differences. In this study we examined the postsynaptic integrative properties of dorsal CA1 PNs in six subpopulations along the transverse (CA1c, CA1b, CA1a) and radial (deep, superficial) axes. Our results suggest that active and passive properties of deep and superficial neurons evolve over the transverse axis to promote the functional specialization of CA1c vs. CA1a as dictated by their cortical input. We also find that CA1b is not merely an intermediate mix of its neighbors, but uniquely balances low excitability with superior input integration of its mixed input, as may be required for its proposed role in sequence encoding. Thus synaptic input and intrinsic properties combine to functionally compartmentalize CA1 processing into at least three transverse axis regions defined by the processing schemes of their composite radial axis subpopulations.NEW & NOTEWORTHY There is increasing interest in CA1 pyramidal neuron heterogeneity and the functional relevance of this diversity. We find that active and passive properties evolve over the transverse and radial axes in dorsal CA1 to promote the functional specialization of CA1c and CA1a for spatial and nonspatial memory, respectively. Furthermore, CA1b is not a mean of its neighbors, but features low excitability and superior integrative capabilities, relevant to its role in nonspatial sequence encoding.


Assuntos
Região CA1 Hipocampal/fisiologia , Memória/fisiologia , Células Piramidais/fisiologia , Animais , Fenômenos Eletrofisiológicos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Memória Espacial/fisiologia
11.
J Med Syst ; 40(2): 39, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26590977

RESUMO

This paper discusses the creation of an Agent-Based Simulation that modeled the introduction of care coordination capabilities into a complex system of care for patients with Serious and Persistent Mental Illness. The model describes the engagement between patients and the medical, social and criminal justice services they interact with in a complex ecosystem of care. We outline the challenges involved in developing the model, including process mapping and the collection and synthesis of data to support parametric estimates, and describe the controls built into the model to support analysis of potential changes to the system. We also describe the approach taken to calibrate the model to an observable level of system performance. Preliminary results from application of the simulation are provided to demonstrate how it can provide insights into potential improvements deriving from introduction of care coordination technology.


Assuntos
Criminologia/organização & administração , Transtornos Mentais/terapia , Serviços de Saúde Mental/organização & administração , Modelos Teóricos , Administração dos Cuidados ao Paciente/organização & administração , Serviço Social/organização & administração , Simulação por Computador , Humanos
12.
Neuroscience ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878815

RESUMO

Entorhinal cortex (EC) LIII and LII glutamatergic neurons make monosynaptic connections onto distal apical dendrites of hippocampal CA1 and CA2 pyramidal neurons (PNs), respectively, through perforant path (PP) projections. We previously reported that a brief train of PP stimuli evokes strong supralinear temporal summation of excitatory postsynaptic potentials (EPSPs) in CA1 PNs that requires NMDAR activation, with relatively little summation in CA2 PNs in mice of either sex. Here we provide evidence from combined immunogold electron microscopy, cell-type specific genetic deletion and pharmacology that the NMDARs required for supralinear temporal summation of the CA1 PP EPSP are presynaptic, located in the PP terminals. Moreover, we found that the number of NMDARs in PP terminals innervating CA1 PNs is significantly greater than that found in PP terminals innervating CA2 PNs, providing a potential explanation for the difference in temporal summation in these two classes of hippocampal PNs.

13.
Sci Transl Med ; 14(676): eadd0484, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542694

RESUMO

SARS-CoV-2 causes profound changes in the sense of smell, including total smell loss. Although these alterations are often transient, many patients with COVID-19 exhibit olfactory dysfunction that lasts months to years. Although animal and human autopsy studies have suggested mechanisms driving acute anosmia, it remains unclear how SARS-CoV-2 causes persistent smell loss in a subset of patients. To address this question, we analyzed olfactory epithelial samples collected from 24 biopsies, including from nine patients with objectively quantified long-term smell loss after COVID-19. This biopsy-based approach revealed a diffuse infiltrate of T cells expressing interferon-γ and a shift in myeloid cell population composition, including enrichment of CD207+ dendritic cells and depletion of anti-inflammatory M2 macrophages. Despite the absence of detectable SARS-CoV-2 RNA or protein, gene expression in the barrier supporting cells of the olfactory epithelium, termed sustentacular cells, appeared to reflect a response to ongoing inflammatory signaling, which was accompanied by a reduction in the number of olfactory sensory neurons relative to olfactory epithelial sustentacular cells. These findings indicate that T cell-mediated inflammation persists in the olfactory epithelium long after SARS-CoV-2 has been eliminated from the tissue, suggesting a mechanism for long-term post-COVID-19 smell loss.


Assuntos
COVID-19 , Transtornos do Olfato , Animais , Humanos , COVID-19/complicações , Anosmia , SARS-CoV-2 , RNA Viral/metabolismo , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/etiologia , Mucosa Olfatória , Expressão Gênica
14.
bioRxiv ; 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35478953

RESUMO

Most human subjects infected by SARS-CoV-2 report an acute alteration in their sense of smell, and more than 25% of COVID patients report lasting olfactory dysfunction. While animal studies and human autopsy tissues have suggested mechanisms underlying acute loss of smell, the pathophysiology that underlies persistent smell loss remains unclear. Here we combine objective measurements of smell loss in patients suffering from post-acute sequelae of SARS-CoV-2 infection (PASC) with single cell sequencing and histology of the olfactory epithelium (OE). This approach reveals that the OE of patients with persistent smell loss harbors a diffuse infiltrate of T cells expressing interferon-gamma; gene expression in sustentacular cells appears to reflect a response to inflammatory signaling, which is accompanied by a reduction in the number of olfactory sensory neurons relative to support cells. These data identify a persistent epithelial inflammatory process associated with PASC, and suggests mechanisms through which this T cell-mediated inflammation alters the sense of smell.

15.
Neuron ; 105(2): 246-259.e8, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31786013

RESUMO

Though the temporal precision of neural computation has been studied intensively, a data-driven determination of this precision remains a fundamental challenge. Reproducible spike patterns may be obscured on single trials by uncontrolled temporal variability in behavior and cognition and may not be time locked to measurable signatures in behavior or local field potentials (LFP). To overcome these challenges, we describe a general-purpose time warping framework that reveals precise spike-time patterns in an unsupervised manner, even when these patterns are decoupled from behavior or are temporally stretched across single trials. We demonstrate this method across diverse systems: cued reaching in nonhuman primates, motor sequence production in rats, and olfaction in mice. This approach flexibly uncovers diverse dynamical firing patterns, including pulsatile responses to behavioral events, LFP-aligned oscillatory spiking, and even unanticipated patterns, such as 7 Hz oscillations in rat motor cortex that are not time locked to measured behaviors or LFP.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Precursor de Proteína beta-Amiloide/genética , Animais , Técnicas de Introdução de Genes , Macaca mulatta , Masculino , Camundongos , Camundongos Transgênicos , Microinjeções , Córtex Motor/fisiologia , Fragmentos de Peptídeos/genética , Cultura Primária de Células , Proteínas/genética , Ratos , Fatores de Tempo
16.
Neuron ; 107(2): 219-233, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32640192

RESUMO

The main neurological manifestation of COVID-19 is loss of smell or taste. The high incidence of smell loss without significant rhinorrhea or nasal congestion suggests that SARS-CoV-2 targets the chemical senses through mechanisms distinct from those used by endemic coronaviruses or other common cold-causing agents. Here we review recently developed hypotheses about how SARS-CoV-2 might alter the cells and circuits involved in chemosensory processing and thereby change perception. Given our limited understanding of SARS-CoV-2 pathogenesis, we propose future experiments to elucidate disease mechanisms and highlight the relevance of this ongoing work to understanding how the virus might alter brain function more broadly.


Assuntos
Betacoronavirus , Infecções por Coronavirus/fisiopatologia , Transtornos do Olfato/fisiopatologia , Pneumonia Viral/fisiopatologia , Olfato/fisiologia , Distúrbios do Paladar/fisiopatologia , Paladar/fisiologia , Animais , COVID-19 , Infecções por Coronavirus/epidemiologia , Humanos , Transtornos do Olfato/epidemiologia , Transtornos do Olfato/virologia , Bulbo Olfatório/fisiopatologia , Bulbo Olfatório/virologia , Mucosa Olfatória/fisiopatologia , Mucosa Olfatória/virologia , Pandemias , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Distúrbios do Paladar/epidemiologia , Distúrbios do Paladar/virologia
17.
Sci Adv ; 6(31)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32937591

RESUMO

Altered olfactory function is a common symptom of COVID-19, but its etiology is unknown. A key question is whether SARS-CoV-2 (CoV-2) - the causal agent in COVID-19 - affects olfaction directly, by infecting olfactory sensory neurons or their targets in the olfactory bulb, or indirectly, through perturbation of supporting cells. Here we identify cell types in the olfactory epithelium and olfactory bulb that express SARS-CoV-2 cell entry molecules. Bulk sequencing demonstrated that mouse, non-human primate and human olfactory mucosa expresses two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, single cell sequencing revealed that ACE2 is expressed in support cells, stem cells, and perivascular cells, rather than in neurons. Immunostaining confirmed these results and revealed pervasive expression of ACE2 protein in dorsally-located olfactory epithelial sustentacular cells and olfactory bulb pericytes in the mouse. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients.


Assuntos
Infecções por Coronavirus/patologia , Transtornos do Olfato/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Serina Endopeptidases/metabolismo , Olfato/fisiologia , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/fisiologia , COVID-19 , Callithrix , Humanos , Macaca , Camundongos , Transtornos do Olfato/genética , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Pandemias , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Serina Endopeptidases/genética , Olfato/genética , Internalização do Vírus
19.
Neuron ; 95(5): 1089-1102.e5, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28823730

RESUMO

Input-timing-dependent plasticity (ITDP) is a circuit-based synaptic learning rule by which paired activation of entorhinal cortical (EC) and Schaffer collateral (SC) inputs to hippocampal CA1 pyramidal neurons (PNs) produces a long-term enhancement of SC excitation. We now find that paired stimulation of EC and SC inputs also induces ITDP of SC excitation of CA2 PNs. However, whereas CA1 ITDP results from long-term depression of feedforward inhibition (iLTD) as a result of activation of CB1 endocannabinoid receptors on cholecystokinin-expressing interneurons, CA2 ITDP results from iLTD through activation of δ-opioid receptors on parvalbumin-expressing interneurons. Furthermore, whereas CA1 ITDP has been previously linked to enhanced specificity of contextual memory, we find that CA2 ITDP is associated with enhanced social memory. Thus, ITDP may provide a general synaptic learning rule for distinct forms of hippocampal-dependent memory mediated by distinct hippocampal regions.


Assuntos
Região CA2 Hipocampal/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Região CA2 Hipocampal/citologia , Córtex Entorrinal/fisiologia , Interneurônios/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Células Piramidais/fisiologia , Receptores Opioides delta/metabolismo , Comportamento Social , Fatores de Tempo
20.
eNeuro ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856240

RESUMO

The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/metabolismo , Região CA2 Hipocampal/metabolismo , Células Piramidais/metabolismo , Canais de Potássio Shab/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Proteínas de Artrópodes/farmacologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA2 Hipocampal/citologia , Região CA2 Hipocampal/efeitos dos fármacos , Feminino , Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Canais de Potássio Shab/antagonistas & inibidores , Venenos de Aranha/farmacologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa