Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Cancer ; 18(1): 564, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769046

RESUMO

BACKGROUND: Ceramide synthesis and metabolism is a promising target in cancer drug development. γ-tocotrienol (GT3), a member of the vitamin E family, orchestrates multiple effects that ensure the induction of apoptosis in both, wild-type and RAS-mutated pancreatic cancer cells. Here, we investigated whether these effects involve changes in ceramide synthesis and transport. METHODS: The effects of GT3 on the synthesis of ceramide via the de novo pathway, and the hydrolysis of sphingomyelin were analyzed by the expression levels of the enzymes serine palmitoyl transferase, ceramide synthase-6, and dihydroceramide desaturase, and acid sphingomyelinase in wild-type RAS BxPC3, and RAS-mutated MIA PaCa-2 and Panc 1 pancreatic cancer cells. Quantitative changes in ceramides, dihydroceramides, and sphingomyelin at the cell membrane were detected by LCMS. Modulation of ceramide transport by GT3 was studied by immunochemistry of CERT and ARV-1, and the subsequent effects at the cell membrane was analyzed via immunofluorescence of ceramide, caveolin, and DR5. RESULTS: GT3 favors the upregulation of ceramide by stimulating synthesis at the ER and the plasma membrane. Additionally, the conversion of newly synthesized ceramide to sphingomyelin and glucosylceramide at the Golgi is prevented by the inhibition of CERT. Modulation ARV1 and previously observed inhibition of the HMG-CoA pathway, contribute to changes in membrane structure and signaling functions, allows the clustering of DR5, effectively initiating apoptosis. CONCLUSIONS: Our results suggest that GT3 targets ceramide synthesis and transport, and that the upregulation of ceramide and modulation of transporters CERT and ARV1 are important contributors to the apoptotic properties demonstrated by GT3 in pancreatic cancer cells.


Assuntos
Antineoplásicos/farmacologia , Ceramidas/biossíntese , Cromanos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Esfingolipídeos/metabolismo , Vitamina E/análogos & derivados , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Cromanos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Regulação para Cima , Vitamina E/farmacologia , Vitamina E/uso terapêutico
2.
Am J Physiol Cell Physiol ; 310(5): C381-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26676053

RESUMO

Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle.


Assuntos
Microdissecção e Captura a Laser , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Exercício Físico/fisiologia , Feminino , Humanos , Microdissecção e Captura a Laser/métodos , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Cadeias Leves de Miosina/metabolismo , Adulto Jovem
3.
BMC Cancer ; 14: 675, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25234292

RESUMO

BACKGROUND: Cancer cell esterases are often overexpressed and can have chiral specificities different from that of the corresponding normal cells and can, therefore, be useful targets for activating chemotherapeutic prodrug esters. Prodrug esters are inactive compounds that can be preferentially activated by esterase enzymes. Moreover, cancer cells often exhibit a high level of intrinsic oxidative stress due to an increased formation of reactive oxygen species (ROS) and a decreased expression of some enzymatic antioxidants. Prodrugs designed to induce additional oxidative stress can selectively induce apoptosis in cancer cells already exhibiting a high level of intrinsic oxidative stress. This study focused on the in vitro evaluation of four novel prodrug esters: the R- and S- chiral esters of 4-[(nitrooxy)methyl]phenyl N-acetylalaninate (R- and S-NPAA) and the R- and S- chiral esters of 4-[(nitrooxy)methyl]naphth-1-yl N-acetylalaninate (R- and S-NQM), which are activated, to varying extents, by oxidized protein hydrolase (OPH, EC 3.4.19.1) yielding a quinone methide (QM) intermediate capable of depleting glutathione (GSH), a key intracellular antioxidant. OPH is a serine esterase/protease that is overexpressed in some human tumors and cancer cell lines. METHODS: To evaluate the chiral ester prodrugs, we monitored cellular GSH depletion, cellular protein carbonyl levels (an oxidative stress biomarker) and cell viability in tumorigenic and nontumorigenic prostate cancer cell lines. RESULTS: We found that the prodrugs were activated by OPH and subsequently depleted GSH. The S-chiral ester of NPAA (S-NPAA) was two-fold more effective than the R-chiral ester (R-NPAA) in depleting GSH, increasing oxidative stress, inducing apoptosis, and decreasing cell viability in tumorigenic prostate LNCaP cells but had little effect on non-tumorigenic RWPE-1 cells. In addition, we found that that S-NPAA induced apoptosis and decreased cell viability in tumorigenic DU145 and PC3 prostate cell lines. Similar results were found in a COS-7 model that overexpressed active human OPH (COS-7-OPH). CONCLUSIONS: Our results suggest that prostate tumors overexpressing OPH and/or exhibiting a high level of intrinsic oxidative stress may be susceptible to QM generating prodrug esters that are targeted to OPH with little effect on non-tumorigenic prostate cells.


Assuntos
Alanina/análogos & derivados , Alanina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pró-Fármacos , Alanina/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Humanos , Masculino , Estrutura Molecular , Oxirredução , Estresse Oxidativo , Neoplasias da Próstata/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
BMC Cancer ; 14: 77, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24512522

RESUMO

BACKGROUND: Esterases are often overexpressed in cancer cells and can have chiral specificities different from that of the corresponding normal tissues. For this reason, ester prodrugs could be a promising approach in chemotherapy. In this study, we focused on the identification and characterization of differentially expressed esterases between non-tumorigenic and tumorigenic prostate epithelial cells. METHODS: Cellular lysates from LNCaP, DU 145, and PC3 prostate cancer cell lines, tumorigenic RWPE-2 prostate epithelial cells, and non-tumorigenic RWPE-1 prostate epithelial cells were separated by native polyacrylamide gel electrophoresis (n-PAGE) and the esterase activity bands visualized using α-naphthyl acetate or α-naphthyl-N-acetylalaninate (ANAA) chiral esters and Fast Blue RR salt. The esterases were identified using nanospray LC/MS-MS tandem mass spectrometry and confirmed by Western blotting, native electroblotting, inhibition assays, and activity towards a known specific substrate. The serine protease/esterase oxidized protein hydrolase (OPH) was overexpressed in COS-7 cells to verify our results. RESULTS: The major esterase observed with the ANAA substrates within the n-PAGE activity bands was identified as OPH. OPH (EC 3.4.19.1) is a serine protease/esterase and a member of the prolyl oligopeptidase family. We found that LNCaP lysates contained approximately 40% more OPH compared to RWPE-1 lysates. RWPE-2, DU145 and PC3 cell lysates had similar levels of OPH activity. OPH within all of the cell lysates tested had a chiral preference for the S-isomer of ANAA. LNCaP cells were stained more intensely with ANAA substrates than RWPE-1 cells and COS-7 cells overexpressing OPH were found to have a higher activity towards the ANAA and AcApNA than parent COS-7 cells. CONCLUSIONS: These data suggest that prodrug derivatives of ANAA and AcApNA could have potential as chemotherapeutic agents for the treatment of prostate cancer tumors that overexpress OPH.


Assuntos
Antineoplásicos/administração & dosagem , Esterases/antagonistas & inibidores , Esterases/metabolismo , Pró-Fármacos/administração & dosagem , Neoplasias da Próstata/enzimologia , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Inibidores Enzimáticos/administração & dosagem , Humanos , Hidrolases/antagonistas & inibidores , Hidrolases/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Ratos , Suínos
5.
Bioorg Med Chem Lett ; 22(11): 3632-8, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22572577

RESUMO

The small-molecule, water-soluble molecular beacon probe 1 is hydrolyzed by the lysate and living cells of human prostate cancer cell lines (LNCaP), resulting in strong green fluorescence. In contrast, probe 1 does not undergo significant hydrolysis in either the lysate or living cells of human nontumorigenic prostate cells (RWPE-1). These results, corroborated by UV-Vis spectroscopy and fluorescent microscopy, reveal that probe 1 is a sensitive and specific fluorogenic and chromogenic sensor for the detection of human prostate cancer cells among nontumorigenic prostate cells and that carboxylesterase activity is a specific biomarker for human prostate cancer cells.


Assuntos
Biomarcadores/metabolismo , Corantes Fluorescentes/química , Sondas Moleculares/química , Neoplasias da Próstata/enzimologia , Carboxilesterase/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Masculino , Microscopia de Fluorescência , Conformação Molecular , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Espectrofotometria Ultravioleta , Temperatura
7.
Int J Toxicol ; 30(2): 197-206, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21300769

RESUMO

2-Chloroethyl ethyl sulfide (CEES) or half-mustard gas, a sulfur mustard (HD) analog, is a genotoxic agent that causes oxidative stress and induces both apoptotic and necrotic cell death. Sodium pyruvate induced a necrosis-to-apoptosis shift in HaCaT cells exposed to CEES levels ≤ 1.5 mmol/L and lowered markers of DNA damage, oxidative stress, and inflammation. This study provides a rationale for the future development of multicomponent therapies for HD toxicity in the skin. We hypothesize that a combination of pyruvates with scavengers/antioxidants encapsulated in liposomes for optimal local delivery should be therapeutically beneficial against HD-induced skin injury. However, the latter suggestion should be verified in animal models exposed to HD.


Assuntos
Antioxidantes/farmacologia , Queratinócitos/efeitos dos fármacos , Gás de Mostarda/análogos & derivados , Piruvatos/farmacologia , Pele/efeitos dos fármacos , Apoptose , Biomarcadores , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Inflamação/induzido quimicamente , Lipossomos/metabolismo , Gás de Mostarda/toxicidade , Necrose/metabolismo , Estresse Oxidativo , Pele/patologia
8.
Anticancer Res ; 35(4): 1851-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25862838

RESUMO

The mevalonate pathway plays an important role in cancer biology and has been targeted with farnesyl transferase inhibitors, although their efficacy is limited due to significant adverse effects. Statins and bisphosphonates inhibit the mevalonate pathway at different steps, thus having negative effects at various levels on cancer cells. A combination of these drugs may result in an amplified cytotoxic effect and allow for use of significantly lower doses of the drugs involved. Statins inhibit the mevalonate pathway at 3-hydroxy-3-methylglutaryl coenzyme A reductase and bisphosphonates at farnesyl pyrophosphate synthase. Our results show that low-dose combinations of simvastatin and alendronate have a synergistic cytotoxic effect on androgen-independent prostate cancer PC-3 cells, but not on androgen-dependent LNCaP or DU 145 prostate cancer cells. These two drugs cause a sequential blockade of the mevalonate pathway and significantly affect survival and apoptotic pathways by down-regulating phospho-AKT and activating c-JUN and ERK.


Assuntos
Alendronato/administração & dosagem , Sinergismo Farmacológico , Neoplasias da Próstata/tratamento farmacológico , Sinvastatina/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/biossíntese
9.
J Toxicol ; 2011: 109516, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21776256

RESUMO

Sulfur mustard or mustard gas (HD) and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES), or "half-mustard gas," are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antioxidant liposomes that deliver both water-soluble and lipid-soluble antioxidants protect skin cells from immediate CEES-induced damage via attenuating oxidative stress. Liposomes containing water-soluble antioxidants and/or lipid-soluble antioxidants were evaluated using in vitro model systems. Initially, we found that liposomes containing encapsulated glutathione (GSH-liposomes) increased cell viability and attenuated production of reactive oxygen species (ROS) in HaCaT cells exposed to CEES. Next, GSH-liposomes were tested in a human epidermal model, EpiDerm. In the EpiDerm, GSH-liposomes administered simultaneously or 1 hour after CEES exposure (2.5 mM) increased cell viability, inhibited CEES-induced loss of ATP and attenuated changes in cellular morphology, but did not reduce caspase-3 activity. These findings paralleled the previously described in vivo protective effect of antioxidant liposomes in the rat lung and established the effectiveness of GSH-liposomes in a human epidermal model. This study provides a rationale for use of antioxidant liposomes against HD toxicity in the skin considering further verification in animal models exposed to HD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa