Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mem Inst Oswaldo Cruz ; 112(8): 551-560, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28767980

RESUMO

BACKGROUND: Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES: The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS: To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS: At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS: iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.


Assuntos
Células da Medula Óssea/fisiologia , Movimento Celular , Doença de Chagas/parasitologia , Miocárdio/citologia , Doença Aguda , Animais , Transplante de Medula Óssea/métodos , Cardiomiopatia Chagásica/parasitologia , Quimera , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma cruzi/fisiologia
2.
Cells ; 9(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645832

RESUMO

Chagas disease discovered more than a century ago remains an incurable disease. The objective of this work was to investigate the therapeutic potential of cardiomyocytes derived from mouse embryonic stem cells (CM-mESC) in a model of chronic Chagasic cardiomyopathy (CCC). Mouse embryonic stem cells (mESC) were characterized, transduced with luciferase, and submitted to cardiac differentiation. CM-mESC were labeled with superparamagnetic iron oxide particles. To induce CCC, mice were infected with Brazil strain trypomastigotes. At 150 days post-infection (dpi), infected animals were treated with CM-mESC or PBS. Cells were detected by magnetic resonance imaging (MRI) and bioluminescence. Cardiac function was evaluated by MRI and electrocardiogram at 150 and 196 dpi. CCC mice showed significant differences in MRI and ECG parameters compared to non-infected mice. However, no differences were observed in contractile and electrical parameters between cell and PBS injected groups, 45 days after cell transplantation. Cells were detected 24 h after transplantation by MRI. CM-mESC bioluminescence tracking demonstrated over 90% decrease in signal 8 days after treatment. Nevertheless, the Infected + CM-mESC group showed a significant reduction in the percentage of collagen fibers when compared to the Infected + PBS group. In conclusion, CM-mESC therapy was not effective in reversing cardiac functional changes induced by Chagas disease despite some improvement in myocardial fibrosis.


Assuntos
Cardiomiopatias/metabolismo , Cardiomiopatias/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Miócitos Cardíacos/fisiologia , Animais , Cardiomiopatias/diagnóstico por imagem , Doença de Chagas/diagnóstico por imagem , Doença de Chagas/metabolismo , Doença de Chagas/terapia , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Citometria de Fluxo , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Miócitos Cardíacos/metabolismo
3.
Stem Cell Res Ther ; 9(1): 30, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402309

RESUMO

BACKGROUND: Doxorubicin (Dox) is a chemotherapy drug with limited application due to cardiotoxicity that may progress to heart failure. This study aims to evaluate the role of cardiomyocytes derived from mouse embryonic stem cells (CM-mESCs) in the treatment of Dox-induced cardiomyopathy (DIC) in mice. METHODS: The mouse embryonic stem cell (mESC) line E14TG2A was characterized by karyotype analysis, gene expression using RT-PCR and immunofluorescence. Cells were transduced with luciferase 2 and submitted to cardiac differentiation. Total conditioned medium (TCM) from the CM-mESCs was collected for proteomic analysis. To establish DIC in CD1 mice, Dox (7.5 mg/kg) was administered once a week for 3 weeks, resulting in a cumulative Dox dose of 22.5 mg/kg. At the fourth week, a group of animals was injected intramyocardially with CM-mESCs (8 × 105 cells). Cells were tracked by a bioluminescence assay, and the body weight, echocardiogram, electrocardiogram and number of apoptotic cardiomyocytes were evaluated. RESULTS: mESCs exhibited a normal karyotype and expressed pluripotent markers. Proteomic analysis of TCM showed proteins related to the negative regulation of cell death. CM-mESCs presented ventricular action potential characteristics. Mice that received Dox developed heart failure and showed significant differences in body weight, ejection fraction (EF), end-systolic volume (ESV), stroke volume (SV), heart rate and QT and corrected QT (QTc) intervals when compared to the control group. After cell or placebo injection, the Dox + CM-mESC group showed significant increases in EF and SV when compared to the Dox + placebo group. Reduction in ESV and QT and QTc intervals in Dox + CM-mESC-treated mice was observed at 5 or 30 days after cell treatment. Cells were detected up to 11 days after injection. The Dox + CM-mESC group showed a significant reduction in the percentage of apoptotic cardiomyocytes in the hearts of mice when compared to the Dox + placebo group. CONCLUSIONS: CM-mESC transplantation improves cardiac function in mice with DIC.


Assuntos
Cardiomiopatias/terapia , Doxorrubicina/efeitos adversos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Linhagem Celular , Doxorrubicina/uso terapêutico , Células-Tronco Embrionárias Humanas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/patologia
4.
Stem Cell Res Ther ; 8(1): 36, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202059

RESUMO

BACKGROUND: Heart failure represents an important public health issue due to its high costs and growing incidence worldwide. Evidence showing the regenerative potential of postmitotic heart tissue has suggested the existence of endogenous cardiac stem cells in adult hearts. Cardiosphere-derived cells (CDC) constitute a candidate pool of such cardiac stem cells. Previous studies using acute myocardial infarction (MI) models in rodents demonstrated an improvement in cardiac function after cell therapy with CDC. We evaluated the therapeutic potential of CDC 60 days after MI in a rat model. METHODS: CDC were obtained from human discarded myocardial tissue and rat hearts by enzymatic digestion with collagenase II. At 10-15 days after isolation, small, round, phase-bright cells (PBCs) appeared on top of the adherent fibroblast-like cells. The PBCs were collected and placed on a nonadherent plate for 2 days, where they formed cardiospheres which were then transferred to adherent plates, giving rise to CDC. These CDC were characterized by flow cytometry. Wistar rats were submitted to MI through permanent occlusion of the anterior descending coronary artery. After 60 days, they were immunosuppressed with cyclosporine A during 10 days. On the third day, infarcted animals were treated with 5 × 105 human CDC (hCDC) or placebo through intramyocardial injection guided by echocardiogram. Another group of animals was treated with rat CDC (rCDC) without immunosuppression. hCDC and rCDC were stably transduced with a viral construct expressing luciferase under control of a constitutive promoter. CDC were then used in a bioluminescence assay. Functional parameters were evaluated by echocardiogram 90 and 120 days after MI and by Langendorff at 120 days. RESULTS: CDC had a predominantly mesenchymal phenotype. Cell tracking by bioluminescence demonstrated over 85% decrease in signal at 5-7 days after cell therapy. Cardiac function evaluation by echocardiography showed no differences in ejection fraction, end-diastolic volume, or end-systolic volume between groups receiving human cells, rat cells, or placebo. Hemodynamic analyses and infarct area quantification confirmed that there was no improvement in cardiac remodeling after cell therapy with CDC. CONCLUSION: Our study challenges the effectiveness of CDC in post-ischemic heart failure.


Assuntos
Oclusão Coronária/terapia , Hospedeiro Imunocomprometido , Infarto do Miocárdio/terapia , Esferoides Celulares/transplante , Animais , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/imunologia , Oclusão Coronária/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/patologia , Vasos Coronários/fisiopatologia , Ciclosporina/administração & dosagem , Modelos Animais de Doenças , Ecocardiografia , Testes de Função Cardíaca , Humanos , Injeções Intralesionais , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Wistar , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Falha de Tratamento
5.
PLoS One ; 10(10): e0139350, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448184

RESUMO

We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1ß levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation.


Assuntos
Cardiomegalia/etiologia , Isquemia/complicações , Traumatismo por Reperfusão/complicações , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Actinas/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Chaperonina 60/genética , Chaperonina 60/metabolismo , Citocinas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Coração/fisiologia , Rim/fisiopatologia , Nefropatias/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Miocárdio/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Receptor 2 Toll-Like/deficiência , Receptor 4 Toll-Like/deficiência , Vimentina/genética , Vimentina/metabolismo
6.
Mem. Inst. Oswaldo Cruz ; 112(8): 551-560, Aug. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-894864

RESUMO

BACKGROUND Chagas disease is a public health problem caused by infection with the protozoan Trypanosoma cruzi. There is currently no effective therapy for Chagas disease. Although there is some evidence for the beneficial effect of bone marrow-derived cells in chagasic disease, the mechanisms underlying their effects in the heart are unknown. Reports have suggested that bone marrow cells are recruited to the chagasic heart; however, studies using chimeric mouse models of chagasic cardiomyopathy are rare. OBJECTIVES The aim of this study was to investigate the migration of bone marrow cells to the heart after T. cruzi infection in a model of chagasic disease in chimeric mice. METHODS To obtain chimerical mice, wild-type (WT) C57BL6 mice were exposed to full body irradiation (7 Gy), causing bone marrow ablation. Then, bone marrow cells from green fluorescent protein (GFP)-transgenic mice were infused into the mice. Graft effectiveness was confirmed by flow cytometry. Experimental mice were divided into four groups: (i) infected chimeric (iChim) mice; (ii) infected WT (iWT) mice, both of which received 3 × 104 trypomastigotes of the Brazil strain; (iii) non-infected chimeric (Chim) mice; and (iv) non-infected WT mice. FINDINGS At one-month post-infection, iChim and iWT mice showed first degree atrioventricular block with decreased heart rate and treadmill exercise parameters compared to those in the non-infected groups. MAIN CONCLUSIONS iChim mice showed an increase in parasitaemia, myocarditis, and the presence of amastigote nests in the heart tissue compared to iWT mice. Flow cytometry analysis did not detect haematopoietic progenitor cells in the hearts of infected mice. Furthermore, GFP+ cardiomyocytes were not detected in the tissues of chimeric mice.


Assuntos
Animais , Feminino , Camundongos , Trypanosoma cruzi/fisiologia , Células da Medula Óssea/fisiologia , Cardiomiopatia Chagásica/parasitologia , Transplante de Medula Óssea/métodos , Doença de Chagas/parasitologia , Movimento Celular , Doenças dos Animais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa