Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Immunol ; 15(7): 623-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813163

RESUMO

Afferent lymph-borne dendritic cells essentially rely on the chemokine receptor CCR7 for their transition from the subcapsular lymph node sinus into the parenchyma, a migratory step driven by putative gradients of CCR7 ligands. We found that lymph node fringes indeed contained physiological gradients of the chemokine CCL21, which depended on the expression of CCRL1, the atypical receptor for the CCR7 ligands CCL19 and CCL21. Lymphatic endothelial cells lining the ceiling of the subcapsular sinus, but not those lining the floor, expressed CCRL1, which scavenged chemokines from the sinus lumen. This created chemokine gradients across the sinus floor and enabled the emigration of dendritic cells. In vitro live imaging revealed that spatially confined expression of CCRL1 was necessary and sufficient for the creation of functional chemokine gradients.


Assuntos
Quimiocina CCL21/fisiologia , Linfonodos/imunologia , Receptores CCR/fisiologia , Animais , Movimento Celular , Células Dendríticas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
2.
Immunity ; 44(2): 233-45, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26872694

RESUMO

According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2-16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8(+) T cell immunity.


Assuntos
Infecções por Herpesviridae/imunologia , Muromegalovirus/imunologia , Perforina/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Sinalização do Cálcio , Comunicação Celular , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Perforina/genética , Subpopulações de Linfócitos T/virologia , Linfócitos T Citotóxicos/virologia
3.
Immunity ; 45(4): 889-902, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27692609

RESUMO

In recent years, various intervention strategies have reduced malaria morbidity and mortality, but further improvements probably depend upon development of a broadly protective vaccine. To better understand immune requirement for protection, we examined liver-stage immunity after vaccination with irradiated sporozoites, an effective though logistically difficult vaccine. We identified a population of memory CD8+ T cells that expressed the gene signature of tissue-resident memory T (Trm) cells and remained permanently within the liver, where they patrolled the sinusoids. Exploring the requirements for liver Trm cell induction, we showed that by combining dendritic cell-targeted priming with liver inflammation and antigen recognition on hepatocytes, high frequencies of Trm cells could be induced and these cells were essential for protection against malaria sporozoite challenge. Our study highlights the immune potential of liver Trm cells and provides approaches for their selective transfer, expansion, or depletion, which may be harnessed to control liver infections or autoimmunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Fígado/imunologia , Malária/imunologia , Animais , Linfócitos T CD8-Positivos/parasitologia , Culicidae , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Hepatócitos/imunologia , Hepatócitos/parasitologia , Fígado/parasitologia , Hepatopatias/imunologia , Hepatopatias/parasitologia , Vacinas Antimaláricas/imunologia , Camundongos , Plasmodium berghei/imunologia , Esporozoítos/imunologia , Esporozoítos/parasitologia , Vacinação/métodos
4.
J Biol Chem ; 299(7): 104930, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37330172

RESUMO

Psoriasis is a chronic skin disease characterized by hyperproliferative epidermal lesions infiltrated by autoreactive T cells. Individuals expressing the human leukocyte antigen (HLA) C∗06:02 allele are at highest risk for developing psoriasis. An autoreactive T cell clone (termed Vα3S1/Vß13S1) isolated from psoriatic plaques is selective for HLA-C∗06:02, presenting a peptide derived from the melanocyte-specific autoantigen ADAMTSL5 (VRSRRCLRL). Here we determine the crystal structure of this psoriatic TCR-HLA-C∗06:02 ADAMTSL5 complex with a stabilized peptide. Docking of the TCR involves an extensive complementary charge network formed between negatively charged TCR residues interleaving with exposed arginine residues from the self-peptide and the HLA-C∗06:02 α1 helix. We probed these interactions through mutagenesis and activation assays. The charged interface spans the polymorphic region of the C1/C2 HLA group. Notably the peptide-binding groove of HLA-C∗06:02 appears exquisitely suited for presenting highly charged Arg-rich epitopes recognized by this acidic psoriatic TCR. Overall, we provide a structural basis for understanding the engagement of melanocyte antigen-presenting cells by a TCR implicated in psoriasis while simultaneously expanding our knowledge of how TCRs engage HLA-C.


Assuntos
Antígenos HLA-C , Psoríase , Humanos , Eletricidade Estática , Peptídeos/química , Psoríase/patologia , Receptores de Antígenos de Linfócitos T/genética , Proteínas ADAMTS
5.
Immunity ; 43(6): 1101-11, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682984

RESUMO

Tissue-resident memory T (Trm) cells contribute to local immune protection in non-lymphoid tissues such as skin and mucosa, but little is known about their transcriptional regulation. Here we showed that CD8(+)CD103(+) Trm cells, independent of circulating memory T cells, were sufficient for protection against infection and described molecular elements that were crucial for their development in skin and lung. We demonstrated that the T-box transcription factors (TFs) Eomes and T-bet combined to control CD8(+)CD103(+) Trm cell formation, such that their coordinate downregulation was crucial for TGF-ß cytokine signaling. TGF-ß signaling, in turn, resulted in reciprocal T-box TF downregulation. However, whereas extinguishment of Eomes was necessary for CD8(+)CD103(+) Trm cell development, residual T-bet expression maintained cell surface interleukin-15 (IL-15) receptor ß-chain (CD122) expression and thus IL-15 responsiveness. These findings indicate that the T-box TFs control the two cytokines, TGF-ß and IL-15, which are pivotal for CD8(+)CD103(+) Trm cell development and survival.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Interleucina-15/imunologia , Proteínas com Domínio T/imunologia , Fator de Crescimento Transformador beta/imunologia , Transferência Adotiva , Animais , Regulação para Baixo , Citometria de Fluxo , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Subpopulações de Linfócitos T/imunologia
6.
Immunol Cell Biol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982599

RESUMO

Scientific outreach activities play an important role in disseminating knowledge, connecting the general public to research and breaking down scientific skepticism barriers. However, the vision-impaired community is often disadvantaged when the most common audio-visual approach of scientific communication is applied. Here we integrated tactile clues in the scientific communication of immune processes involved in the autoimmune skin disease psoriasis. We fostered the involvement of the vision-impaired community through interactive experiences, including tactile scientific origami art, a haptic poster and wood-carved molecular models. Readily accessible science communication that engages a number of senses is a critical step toward making science more inclusive and engaging for individuals with a wide range of sensory abilities. The approach of the 2023 Monash Sensory Science exhibition aligns with the principles of equity, diversity and inclusion and helps to empower a more informed and scientifically literate public.

7.
Nat Immunol ; 12(9): 879-87, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21841786

RESUMO

Little is known about the molecular mechanisms that determine the entry into the lymph node and intranodal positioning of lymph-derived cells. By injecting cells directly into afferent lymph vessels of popliteal lymph nodes, we demonstrate that lymph-derived T cells entered lymph-node parenchyma mainly from peripheral medullary sinuses, whereas dendritic cells (DCs) transmigrated through the floor of the subcapsular sinus on the afferent side. Transmigrating DCs induced local changes that allowed the concomitant entry of T cells at these sites. Signals mediated by the chemokine receptor CCR7 were absolutely required for the directional migration of both DCs and T cells into the T cell zone but were dispensable for the parenchymal entry of lymph-derived T cells and dendrite probing of DCs. Our findings provide insight into the molecular and structural requirements for the entry into lymph nodes and intranodal migration of lymph-derived cells of the immune system.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Quimiocinas CC/imunologia , Células Dendríticas/imunologia , Linfonodos/imunologia , Receptores CCR7/imunologia , Migração Transcelular de Célula/imunologia , Migração Transendotelial e Transepitelial/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Quimiocinas CC/metabolismo , Células Dendríticas/citologia , Citometria de Fluxo , Humanos , Injeções Intralinfáticas , Linfa/imunologia , Linfonodos/citologia , Vasos Linfáticos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores CCR7/deficiência , Receptores CCR7/genética
9.
Proteomics ; 21(17-18): e2100036, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33811468

RESUMO

SARS-CoV-2 has caused a significant ongoing pandemic worldwide. A number of studies have examined the T cell mediated immune responses against SARS-CoV-2, identifying potential T cell epitopes derived from the SARS-CoV-2 proteome. Such studies will aid in identifying targets for vaccination and immune monitoring. In this study, we applied tandem mass spectrometry and proteomic techniques to a library of ∼40,000 synthetic peptides, in order to generate a large dataset of SARS-CoV-2 derived peptide MS/MS spectra. On this basis, we built an online knowledgebase, termed virusMS (https://virusms.erc.monash.edu/), to document, annotate and analyse these synthetic peptides and their spectral information. VirusMS incorporates a user-friendly interface to facilitate searching, browsing and downloading the database content. Detailed annotations of the peptides, including experimental information, peptide modifications, predicted peptide-HLA (human leukocyte antigen) binding affinities, and peptide MS/MS spectral data, are provided in virusMS.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Peptídeos , Proteômica , Espectrometria de Massas em Tandem
10.
Immunol Cell Biol ; 99(8): 894-906, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34080230

RESUMO

Regulatory T cells (Tregs) play a critical role in immune regulation and peripheral tolerance. While different types of Tregs have been identified in both mice and humans, much of our understanding about how these cells maintain immune homeostasis is derived from animal models. In this study, we examined two distinct human lymphoid organs to understand how repeated exposure to infections at the mucosal surface influences the phenotype and tissue localization of Tregs. We show that while Tregs in both tonsils and spleen express a tissue-resident phenotype, they accumulate in greater numbers in tonsils. Tonsillar-resident Tregs exhibit a highly suppressive phenotype with significantly increased expression of CD39, ICOS and CTLA-4 compared with their counterparts in circulation or in the spleen. Functionally, resident Tregs are able effectively to suppress T cell proliferation. We further demonstrate that tonsillar-resident Tregs share key features of T follicular helper cells. Spatial analysis reveals that the vast majority of resident Tregs are localized at the border of the T-zone and B cell follicle, as well as within the lymphocyte pockets enriched with resident memory T cells. Together our findings suggest that resident Tregs are strategically co-localized to maintain immune homeostasis at sites of recurrent inflammation.


Assuntos
Ativação Linfocitária , Linfócitos T Reguladores , Animais , Linfócitos B , Humanos , Camundongos , Fenótipo
11.
PLoS Pathog ; 12(8): e1005799, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27540722

RESUMO

Disruption of T cell memory during severe immune suppression results in reactivation of chronic viral infections, such as Epstein Barr virus (EBV) and Cytomegalovirus (CMV). How different subsets of memory T cells contribute to the protective immunity against these viruses remains poorly defined. In this study we examined the compartmentalization of virus-specific, tissue resident memory CD8+ T cells in human lymphoid organs. This revealed two distinct populations of memory CD8+ T cells, that were CD69+CD103+ and CD69+CD103-, and were retained within the spleen and tonsils in the absence of recent T cell stimulation. These two types of memory cells were distinct not only in their phenotype and transcriptional profile, but also in their anatomical localization within tonsils and spleen. The EBV-specific, but not CMV-specific, CD8+ memory T cells preferentially accumulated in the tonsils and acquired a phenotype that ensured their retention at the epithelial sites where EBV replicates. In vitro studies revealed that the cytokine IL-15 can potentiate the retention of circulating effector memory CD8+ T cells by down-regulating the expression of sphingosine-1-phosphate receptor, required for T cell exit from tissues, and its transcriptional activator, Kruppel-like factor 2 (KLF2). Within the tonsils the expression of IL-15 was detected in regions where CD8+ T cells localized, further supporting a role for this cytokine in T cell retention. Together this study provides evidence for the compartmentalization of distinct types of resident memory T cells that could contribute to the long-term protection against persisting viral infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Memória Imunológica , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/patologia , Infecções por Citomegalovirus/patologia , Infecções por Vírus Epstein-Barr/patologia , Feminino , Humanos , Interleucina-15/imunologia , Fatores de Transcrição Kruppel-Like/imunologia , Masculino , Especificidade de Órgãos/imunologia
12.
J Immunol ; 194(5): 2059-63, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25624457

RESUMO

Tissue-resident memory T cells provide local immune protection in barrier tissues, such as skin and mucosa. However, the molecular mechanisms controlling effector T cell retention and subsequent memory formation in those locations are not fully understood. In this study, we analyzed the role of CD69, an early leukocyte activation marker, in regulating effector T cell egress from peripheral tissues. We provide evidence that CD69 surface expression by skin-infiltrating CD8 T cells can be regulated at multiple levels, including local Ag stimulation and signaling through type I IFNRs, and it coincides with the transcriptional downregulation of the sphingosine-1-phosphate receptor S1P1. Importantly, we demonstrate that expression of CD69, by interfering with sphingosine-1-phosphate receptor function, is a critical determinant of prolonged T cell retention and local memory formation. Our results define an important step in the generation of long-lived adaptive immune memory at body surfaces.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Lectinas Tipo C/imunologia , Receptores de Lisoesfingolipídeo/imunologia , Imunidade Adaptativa , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos Virais/genética , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Feminino , Regulação da Expressão Gênica , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Imunofenotipagem , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Lectinas Tipo C/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais , Pele/imunologia , Pele/patologia , Pele/virologia
13.
Proc Natl Acad Sci U S A ; 111(14): 5307-12, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706879

RESUMO

Barrier tissues such as the skin contain various populations of immune cells that contribute to protection from infections. These include recently identified tissue-resident memory T cells (TRM). In the skin, these memory CD8(+) T cells reside in the epidermis after being recruited to this site by infection or inflammation. In this study, we demonstrate prolonged persistence of epidermal TRM preferentially at the site of prior infection despite sustained migration. Computational simulation of TRM migration within the skin over long periods revealed that the slow rate of random migration effectively constrains these memory cells within the region of skin in which they form. Notably, formation of TRM involved a concomitant local reduction in dendritic epidermal γδ T-cell numbers in the epidermis, indicating that these populations persist in mutual exclusion and may compete for local survival signals. Accordingly, we show that expression of the aryl hydrocarbon receptor, a transcription factor important for dendritic epidermal γδ T-cell maintenance in skin, also contributes to the persistence of skin TRM. Together, these data suggest that skin tissue-resident memory T cells persist within a tightly regulated epidermal T-cell niche.


Assuntos
Memória Imunológica , Pele/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Movimento Celular , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos
14.
Trends Immunol ; 33(6): 271-80, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22459312

RESUMO

The continuous migration of immune cells is of utmost importance for the induction of both protective immunity as well as immunological tolerance. However, relatively little is known about the molecular cues that regulate the entry of immune cells from peripheral, nonlymphoid tissues into afferent lymph vessels and, in particular, their subsequent transmigration from afferent lymphatics into the parenchyma of draining lymph nodes (LNs). Here, we review the requirements for T cells and dendritic cells (DCs) to enter initial afferent lymph vessels of the skin. We discuss how these cells subsequently gain access to the paracortex of draining lymph nodes; a location that allows for efficient interaction between both cell populations, providing the right environment for the induction of immunity as well as tolerance.


Assuntos
Movimento Celular , Linfonodos/imunologia , Linfócitos T/imunologia , Animais , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Pele/citologia , Pele/imunologia , Linfócitos T/citologia
15.
Methods Protoc ; 7(2)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38525778

RESUMO

The generation of bone-marrow-derived dendritic cells is a widely used approach in immunological research to study antigen processing and presentation, as well as T-cell activation responses. However, the initial step of isolating the bone marrow can be time-consuming, especially when larger numbers of precursor cells are required. Here, we assessed whether an accelerated bone marrow isolation method using centrifugation is suitable for the differentiation of FMS-like tyrosine kinase 3 ligand-driven dendritic cells. Compared to the conventional flushing method, the centrifugation-based isolation method resulted in a similar bone marrow cell yield on Day 0, increased cell numbers by Day 8, similar proportions of dendritic cell subsets, and consequently a higher number of type 1 conventional dendritic cells (cDC1) from the culture. Although the primary purpose of this method of optimization was to improve experimental efficiency and increase the output of cDC1s, the protocol is also compatible with the differentiation of other dendritic cell subsets such as cDC2 and plasmacytoid dendritic cells, with an improved output cell count and a consistent phenotype.

16.
Nat Commun ; 15(1): 7547, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214998

RESUMO

Most COVID-19 vaccines elicit immunity against the SARS-CoV-2 Spike protein. However, Spike protein mutations in emerging strains and immune evasion by the SARS-CoV-2 virus demonstrates the need to develop more broadly targeting vaccines. To facilitate this, we use mass spectrometry to identify immunopeptides derived from seven relatively conserved structural and non-structural SARS-CoV-2 proteins (N, E, Nsp1/4/5/8/9). We use two different B-lymphoblastoid cell lines to map Human Leukocyte Antigen (HLA) class I and class II immunopeptidomes covering some of the prevalent HLA types across the global human population. We employ DNA plasmid transfection and direct antigen delivery approaches to sample different antigens and find 248 unique HLA class I and HLA class II bound peptides with 71 derived from N, 12 from E, 28 from Nsp1, 19 from Nsp4, 73 from Nsp8 and 45 peptides derived from Nsp9. Over half of the viral peptides are unpublished. T cell reactivity tested against 56 of the detected peptides shows CD8+ and CD4+ T cell responses against several peptides from the N, E, and Nsp9 proteins. Results from this study will aid the development of next-generation COVID vaccines targeting epitopes from across a number of SARS-CoV-2 proteins.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/imunologia , COVID-19/virologia , Haplótipos , Peptídeos/imunologia , Peptídeos/química , Epitopos de Linfócito T/imunologia , Antígenos HLA/imunologia , Antígenos HLA/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Vacinas contra COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos Virais/imunologia , Antígenos Virais/genética , Linhagem Celular
17.
Eur J Immunol ; 42(1): 48-57, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21969271

RESUMO

The chemokine receptor CCR7 has a central role in regulating homing and positioning of T cells and DCs to lymph nodes (LNs) and participates in T-cell development and activation. In this study, we addressed the role of CCR7 signaling in T(H) 2 polarization and B-cell activation. We provide evidence that the lack of CCR7 drives the capacity of naïve CD4(+) T cells to polarize toward T(H) 2 cells. This propensity contributes to a lymph node environment in CCR7-deficent mice characterized by increased expression of IL-4 and increased frequency of T(H) 2 cells. We show that elevated IL-4 levels lead to B-cell activation characterized by up-regulated expression of MHC class II, CD23 and CD86. Activated B cells are in turn highly efficient in presenting antigen to CD4(+) T cells and thus potentially contribute to the T(H) 2 microenvironment. Taken together, our results support the idea of a CCR7-dependent patterning of T(H) 2 responses, with absent CCR7 signaling favoring T(H) 2 polarization, dislocation of T helper cells into the B-cell follicles and, as a consequence, B-cell activation.


Assuntos
Linfócitos B/imunologia , Linfonodos/imunologia , Receptores CCR7/imunologia , Células Th2/imunologia , Animais , Linfócitos B/citologia , Antígeno B7-2/imunologia , Polaridade Celular/imunologia , Feminino , Interleucina-4/genética , Interleucina-4/imunologia , Linfonodos/citologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , RNA/química , RNA/genética , Receptores CCR7/genética , Receptores de IgE/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Organismos Livres de Patógenos Específicos
18.
Comput Struct Biotechnol J ; 21: 1678-1687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890882

RESUMO

Immunopeptidomics has made tremendous contributions to our understanding of antigen processing and presentation, by identifying and quantifying antigenic peptides presented on the cell surface by Major Histocompatibility Complex (MHC) molecules. Large and complex immunopeptidomics datasets can now be routinely generated using Liquid Chromatography-Mass Spectrometry techniques. The analysis of this data - often consisting of multiple replicates/conditions - rarely follows a standard data processing pipeline, hindering the reproducibility and depth of analysis of immunopeptidomic data. Here, we present Immunolyser, an automated pipeline designed to facilitate computational analysis of immunopeptidomic data with a minimal initial setup. Immunolyser brings together routine analyses, including peptide length distribution, peptide motif analysis, sequence clustering, peptide-MHC binding affinity prediction, and source protein analysis. Immunolyser provides a user-friendly and interactive interface via its webserver and is freely available for academic purposes at https://immunolyser.erc.monash.edu/. The open-access source code can be downloaded at our GitHub repository: https://github.com/prmunday/Immunolyser. We anticipate that Immunolyser will serve as a prominent computational pipeline to facilitate effortless and reproducible analysis of immunopeptidomic data.

19.
J Biol Chem ; 286(45): 39153-63, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21937446

RESUMO

Dendritic cells (DCs) are the most potent antigen-presenting cells of the immune system. Depending on their maturation status, they prime T cells to induce adaptive immunity or tolerance. DCs express CD155, an immunoglobulin-like receptor binding CD226 present on T and natural killer (NK) cells. CD226 represents an important co-stimulator during T cell priming but also serves as an activating receptor on cytotoxic T and NK cells. Here, we report that cells of the T and NK cell lineage of CD155(-/-) mice express markedly elevated protein levels of CD226 compared with wild type (WT). On heterozygous CD155(+/-) T cells, CD226 up-regulation is half-maximal, implying an inverse gene-dosis effect. Moreover, CD226 up-regulation is independent of antigen-driven activation because it occurs already in thymocytes and naïve peripheral T cells. In vivo, neutralizing anti-CD155 antibody elicits up-regulation of CD226 on T cells demonstrating, that the observed modulation can be triggered by interrupting CD155-CD226 contacts. Adoptive transfers of WT or CD155(-/-) T cells into CD155(-/-) or WT recipients, respectively, revealed that CD226 modulation is accomplished in trans. Analysis of bone marrow chimeras showed that regulators in trans are of hematopoietic origin. We demonstrate that DCs are capable of manipulating CD226 levels on T cells in vivo but not in vitro, suggesting that the process of T cells actively scanning antigen-presenting DCs inside secondary lymphoid organs is required for CD226 modulation. Hence, a CD226 level divergent from WT may be exploited as a sensor to detect abnormal DC/T-cell cross-talk as illustrated for T cells in mice lacking CCR7.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Linfonodos/imunologia , Linfócitos T/imunologia , Regulação para Cima/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/farmacologia , Antígenos de Diferenciação de Linfócitos T/biossíntese , Antígenos de Diferenciação de Linfócitos T/genética , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores CCR7/genética , Receptores CCR7/imunologia , Receptores CCR7/metabolismo , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/imunologia , Receptores Virais/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428180

RESUMO

While direct allorecognition underpins both solid organ allograft rejection and tolerance induction, the specific molecular targets of most directly alloreactive CD8+ T cells have not been defined. In this study, we used a combination of genetically engineered major histocompatibility complex class I (MHC I) constructs, mice with a hepatocyte-specific mutation in the class I antigen-presentation pathway, and immunopeptidomic analysis to provide definitive evidence for the contribution of the peptide cargo of allogeneic MHC I molecules to transplant tolerance induction. We established a systematic approach for the discovery of directly recognized pMHC epitopes and identified 17 strongly immunogenic H-2Kb-associated peptides recognized by CD8+ T cells from B10.BR (H-2k) mice, 13 of which were also recognized by BALB/c (H-2d) mice. As few as 5 different tetramers used together were able to identify a high proportion of alloreactive T cells within a polyclonal population, suggesting that there are immunodominant allogeneic MHC-peptide complexes that can account for a large component of the alloresponse.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/imunologia , Transplante de Pele , Tolerância ao Transplante/imunologia , Aloenxertos , Animais , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa