Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362260

RESUMO

Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.


Assuntos
Pentilenotetrazol , Receptores de N-Metil-D-Aspartato , Animais , Ratos , Maleato de Dizocilpina , Hipocampo/metabolismo , Plasticidade Neuronal , Pentilenotetrazol/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/induzido quimicamente
2.
Pflugers Arch ; 473(5): 753-774, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32979108

RESUMO

Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.


Assuntos
Envelhecimento/patologia , Astenia/patologia , Astrócitos/metabolismo , Encéfalo/fisiologia , Animais , Astrócitos/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Senescência Celular , Humanos
3.
Glia ; 67(1): 37-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427548

RESUMO

Experimental focal cortical ischemic lesions consist of an ischemic core and a potentially salvageable peri-ischemic region, the ischemic penumbra. The activity of neurons and astrocytes is assumed to be suppressed in the penumbra because the electrical function is interrupted, but this is incompletely elucidated. Most experimental stroke studies used young adult animals, whereas stroke is prevalent in the elderly population. Using two-photon imaging in vivo, we here demonstrate extensive but electrically silent, spontaneous Ca2+ activity in neurons and astrocytes in the ischemic penumbra of 18- to 24-month-old mice 2-4 hr after middle cerebral artery occlusion. In comparison, stroke reduced spontaneous Ca2+ activity in neurons and astrocytes in adult mice (3-4 months of age). In aged mice, stroke increased astrocytic spontaneous Ca2+ activity considerably while neuronal spontaneous Ca2+ activity was unchanged. Blockade of action potentials and of purinergic receptors strongly reduced spontaneous Ca2+ activity in both neurons and astrocytes in the penumbra of old stroke mice. This indicates that stroke had a direct influence on mechanisms in presynaptic terminals and on purinergic signaling. Thus, highly dynamic variations in spontaneous Ca2+ activity characterize the electrically compromised penumbra, with remarkable differences between adult and old mice. The data are consistent with the notion that aged neurons and astrocytes take on a different phenotype than young mice. The increased activity of the aged astrocyte phenotype may be harmful to neurons. We suggest that the abundant spontaneous Ca2+ activity in astrocytes in the ischemic penumbra of old mice may be a novel target for neuroprotection strategies. A video abstract of this article can be found at https://youtu.be/AKlwKFsz1qE.


Assuntos
Envelhecimento/metabolismo , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Envelhecimento/patologia , Animais , Astrócitos/patologia , Isquemia Encefálica/patologia , Eletrocorticografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
4.
J Theor Biol ; 469: 137-147, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30831173

RESUMO

Octopus cells (OCs) of the mammalian auditory brainstem precisely encode timing of fast transient sounds and tone onsets. Sharp temporal fidelity of OCs relies on low resting membrane resistance, which suggests high energy expenditure on maintaining ion gradients across plasma membrane. We provide a model-based estimate of energy consumption in resting and spiking OCs. Our results predict that a resting OC consumes up to 2.6 × 109 ATP molecules (ATPs) per second which remarkably exceeds energy consumption of other CNS neurons. Glucose usage by all OCs in the rat is nevertheless low due to their low number. Major part of the OCs energy use results from the ion mechanisms providing for the low membrane resistance: hyperpolarization-activated mixed cation conductance and low-voltage activated K+-conductance. Spatially ordered synapses-a feature of the OCs allowing them to compensate for asynchrony of the synaptic input-brings only a 12% energy saving to OCs excitability cost. Only 13% of total OC energy used for an AP generation (1.5 × 107 ATPs) is associated with the AP generation in the axon initial segment, 64%-with synaptic currents processing and 23%-with keeping resting potential.


Assuntos
Percepção Auditiva/fisiologia , Tronco Encefálico/citologia , Metabolismo Energético , Modelos Neurológicos , Neurônios/metabolismo , Potenciais de Ação , Cóclea/fisiologia , Glucose/metabolismo , Ativação do Canal Iônico , Temperatura , Fatores de Tempo
5.
Brain ; 141(7): 2032-2046, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053174

RESUMO

Spreading depolarization is assumed to be the mechanism of migraine with aura, which is accompanied by an initial predominant hyperaemic response followed by persistent vasoconstriction. Cerebral blood flow responses are impaired in patients and in experimental animals after spreading depolarization. Understanding the regulation of cortical blood vessels during and after spreading depolarization could help patients with migraine attacks, but our knowledge of these vascular mechanisms is still incomplete. Recent findings show that control of cerebral blood flow does not only occur at the arteriole level but also at capillaries. Pericytes are vascular mural cells that can constrict or relax around capillaries, mediating local cerebral blood flow control. They participate in the constriction observed during brain ischaemia and might be involved the disruption of the microcirculation during spreading depolarization. To further understand the regulation of cerebral blood flow in spreading depolarization, we examined penetrating arterioles and capillaries with respect to vascular branching order, pericyte location and pericyte calcium responses during somatosensory stimulation and spreading depolarization. Mice expressing a red fluorescent indicator and intravenous injections of FITC-dextran were used to visualize pericytes and vessels, respectively, under two-photon microscopy. By engineering a genetically encoded calcium indicator we could record calcium changes in both pericytes around capillaries and vascular smooth muscle cells around arterioles. We show that somatosensory stimulation evoked a decrease in cytosolic calcium in pericytes located on dilating capillaries, up to the second order capillaries. Furthermore, we show that prolonged vasoconstriction following spreading depolarization is strongest in first order capillaries, with a persistent increase in pericyte calcium. We suggest that the persistence of the 'spreading cortical oligaemia' in migraine could be caused by this constriction of cortical capillaries. After spreading depolarization, somatosensory stimulation no longer evoked changes in capillary diameter and pericyte calcium. Thus, calcium changes in pericytes located on first order capillaries may be a key determinant in local blood flow control and a novel vascular mechanism in migraine. We suggest that prevention or treatment of capillary constriction in migraine with aura, which is an independent risk factor for stroke, may be clinically useful.


Assuntos
Capilares/fisiologia , Circulação Cerebrovascular/fisiologia , Pericitos/fisiologia , Animais , Arteríolas/fisiologia , Encéfalo/irrigação sanguínea , Isquemia Encefálica/fisiopatologia , Cálcio/metabolismo , Modelos Animais de Doenças , Potenciais Somatossensoriais Evocados/fisiologia , Humanos , Masculino , Camundongos , Enxaqueca com Aura/fisiopatologia , Enxaqueca com Aura/terapia , Acidente Vascular Cerebral/fisiopatologia , Vasoconstrição/fisiologia
6.
Cereb Cortex ; 25(9): 2594-609, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24692513

RESUMO

Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent cytosolic Ca(2+) transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca(2+) activities in neurons and astrocytes. Intermediate and high concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might selectively gate and amplify transient low-frequency somatosensory inputs, filter out high-frequency inputs, and enhance vascular and metabolic responses that are likely to be reflected in BOLD functional neuroimaging signals.


Assuntos
Cálcio/metabolismo , Circulação Cerebrovascular/fisiologia , Consumo de Oxigênio/fisiologia , Receptores de GABA-A/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Biofísica , Circulação Cerebrovascular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Estimulação Elétrica , Lateralidade Funcional , Agonistas GABAérgicos/farmacologia , Isoxazóis/farmacologia , Camundongos , Consumo de Oxigênio/efeitos dos fármacos , Pressão Parcial , Piridinas/farmacologia , Sulfonamidas/metabolismo , Tiazóis/metabolismo , Vibrissas/inervação , Zolpidem , Ácido gama-Aminobutírico/farmacologia
7.
Proc Natl Acad Sci U S A ; 110(48): E4678-87, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218625

RESUMO

Increased neuron and astrocyte activity triggers increased brain blood flow, but controversy exists over whether stimulation-induced changes in astrocyte activity are rapid and widespread enough to contribute to brain blood flow control. Here, we provide evidence for stimulus-evoked Ca(2+) elevations with rapid onset and short duration in a large proportion of cortical astrocytes in the adult mouse somatosensory cortex. Our improved detection of the fast Ca(2+) signals is due to a signal-enhancing analysis of the Ca(2+) activity. The rapid stimulation-evoked Ca(2+) increases identified in astrocyte somas, processes, and end-feet preceded local vasodilatation. Fast Ca(2+) responses in both neurons and astrocytes correlated with synaptic activity, but only the astrocytic responses correlated with the hemodynamic shifts. These data establish that a large proportion of cortical astrocytes have brief Ca(2+) responses with a rapid onset in vivo, fast enough to initiate hemodynamic responses or influence synaptic activity.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Comunicação Celular/fisiologia , Hemodinâmica/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Fluorescência , Processamento de Imagem Assistida por Computador , Fluxometria por Laser-Doppler , Camundongos , Microscopia Confocal , Córtex Somatossensorial/metabolismo
8.
Biophys J ; 107(4): 891-900, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25140424

RESUMO

We study orientational ordering of membrane compounds in the myelinated nerve fiber by means of polarized Raman microspectroscopy. The theory of orientational distribution functions was adapted to live-cell measurements. The obtained orientational distribution functions of carotenoids and lipid acyl chain clearly indicated a predominantly radial-like orientation in membranes of the myelin. Two-dimensional Raman images, made under optimal polarization of incident laser beam, corroborated the proposed carotenoid orientation within the bilayer. Experimental data suggested the tilted orientation of both carotenoid polyenic and lipid acyl chains. The values of maximum tilt angles were similar, with possible implication of carotenoid-induced ordering effect on lipid acyl chains, and hence change of myelin membrane properties. This study stages carotenoids of the nerve as possible mediators of excitation and leverages underlying activity-dependent membrane reordering.


Assuntos
Carotenoides/metabolismo , Bainha de Mielina/metabolismo , Nervo Isquiático/metabolismo , Análise Espectral Raman/métodos , Algoritmos , Animais , Anisotropia , Lasers , Bicamadas Lipídicas/metabolismo , Microscopia Confocal , Modelos Biológicos , Rana temporaria , Análise Espectral Raman/instrumentação
9.
Neuroimage ; 68: 192-202, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23219568

RESUMO

Intercellular glial calcium waves (GCW) constitute a signaling pathway which can be visualized by fluorescence imaging of cytosolic Ca(2+) changes. Reliable detection of calcium waves in multiphoton imaging data is challenging because of low signal-to-noise ratio. We modified the multiscale vision model (MVM), originally employed to detect faint objects in astronomy data to process stacks of fluorescent images. We demonstrate that the MVM identified and characterized GCWs with much higher sensitivity and detail than pixel thresholding. Origins of GCWs were often associated with prolonged secondary Ca(2+) elevations. The GCWs had variable shapes, and secondary GCWs were observed to bud from the primary, larger GCW. GCWs evaded areas shortly before occupied by a preceding GCW instead circulating around the refractory area. Blood vessels uniquely reshaped GCWs and were associated with secondary GCW events. We conclude that the MVM provides unique possibilities to study spatiotemporally correlated Ca(2+) signaling in brain tissue.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Cálcio/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Neuroglia/metabolismo , Algoritmos , Humanos , Fótons
10.
Am J Physiol Renal Physiol ; 304(1): F88-F102, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22975020

RESUMO

Tubuloglomerular feedback (TGF) and the myogenic mechanism combine in each nephron to regulate blood flow and glomerular filtration rate. Both mechanisms are nonlinear, generate self-sustained oscillations, and interact as their signals converge on arteriolar smooth muscle, forming a regulatory ensemble. Ensembles may synchronize. Smooth muscle cells in the ensemble depolarize periodically, generating electrical signals that propagate along the vascular network. We developed a mathematical model of a nephron-vascular network, with 16 versions of a single nephron model containing representations of both mechanisms in the regulatory ensemble, to examine the effects of network structure on nephron synchronization. Symmetry, as a property of a network, facilitates synchronization. Nephrons received blood from a symmetric electrically conductive vascular tree. Symmetry was created by using identical nephron models at each of the 16 sites and symmetry breaking by varying nephron length. The symmetric model achieved synchronization of all elements in the network. As little as 1% variation in nephron length caused extensive desynchronization, although synchronization was maintained in small nephron clusters. In-phase synchronization predominated among nephrons separated by one or three vascular nodes and antiphase synchronization for five or seven nodes of separation. Nephron dynamics were irregular and contained low-frequency fluctuations. Results are consistent with simultaneous blood flow measurements in multiple nephrons. An interaction between electrical signals propagated through the network to cause synchronization; variation in vascular pressure at vessel bifurcations was a principal cause of desynchronization. The results suggest that the vasculature supplies blood to nephrons but also engages in robust information transfer.


Assuntos
Rim/irrigação sanguínea , Modelos Biológicos , Néfrons/irrigação sanguínea , Circulação Renal/fisiologia , Animais , Pressão Arterial , Arteríolas/fisiologia , Fenômenos Eletrofisiológicos , Taxa de Filtração Glomerular , Néfrons/fisiologia , Ratos
11.
Biophys Rev ; 15(5): 1303-1333, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37975000

RESUMO

Astrocytes have been in the limelight of active research for about 3 decades now. Over this period, ideas about their function and role in the nervous system have evolved from simple assistance in energy supply and homeostasis maintenance to a complex informational and metabolic hub that integrates data on local neuronal activity, sensory and arousal context, and orchestrates many crucial processes in the brain. Rapid progress in experimental techniques and data analysis produces a growing body of data, which can be used as a foundation for formulation of new hypotheses, building new refined mathematical models, and ultimately should lead to a new level of understanding of the contribution of astrocytes to the cognitive tasks performed by the brain. Here, we highlight recent progress in astrocyte research, which we believe expands our understanding of how low-level signaling at a cellular level builds up to processes at the level of the whole brain and animal behavior. We start our review with revisiting data on the role of noradrenaline-mediated astrocytic signaling in locomotion, arousal, sensory integration, memory, and sleep. We then briefly review astrocyte contribution to the regulation of cerebral blood flow regulation, which is followed by a discussion of biophysical mechanisms underlying astrocyte effects on different brain processes. The experimental section is closed by an overview of recent experimental techniques available for modulation and visualization of astrocyte dynamics. We then evaluate how the new data can be potentially incorporated into the new mathematical models or where and how it already has been done. Finally, we discuss an interesting prospect that astrocytes may be key players in important processes such as the switching between sleep and wakefulness and the removal of toxic metabolites from the brain milieu.

12.
Function (Oxf) ; 4(4): zqad019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342415

RESUMO

Locomotion triggers a coordinated response of both neurons and astrocytes in the brain. Here we performed calcium (Ca2+) imaging of these two cell types in the somatosensory cortex in head-fixed mice moving on the airlifted platform. Ca2+ activity in astrocytes significantly increased during locomotion from a low quiescence level. Ca2+ signals first appeared in the distal processes and then propagated to astrocytic somata, where it became significantly larger and exhibited oscillatory behaviour. Thus, astrocytic soma operates as both integrator and amplifier of Ca2+ signal. In neurons, Ca2+ activity was pronounced in quiescent periods and further increased during locomotion. Neuronal Ca2+ concentration ([Ca2+]i) rose almost immediately following the onset of locomotion, whereas astrocytic Ca2+ signals lagged by several seconds. Such a long lag suggests that astrocytic [Ca2+]i elevations are unlikely to be triggered by the activity of synapses among local neurons. Ca2+ responses to pairs of consecutive episodes of locomotion did not significantly differ in neurons, while were significantly diminished in response to the second locomotion in astrocytes. Such astrocytic refractoriness may arise from distinct mechanisms underlying Ca2+ signal generation. In neurons, the bulk of Ca2+ enters through the Ca2+ channels in the plasma membrane allowing for steady-level Ca2+ elevations in repetitive runs. Astrocytic Ca2+ responses originate from the intracellular stores, the depletion of which affects subsequent Ca2+ signals. Functionally, neuronal Ca2+ response reflects sensory input processed by neurons. Astrocytic Ca2+ dynamics is likely to provide metabolic and homeostatic support within the brain active milieu.


Assuntos
Astrócitos , Cálcio , Camundongos , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Neurônios/metabolismo , Cálcio da Dieta/metabolismo
13.
Cell Rep ; 42(12): 113514, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38041814

RESUMO

During hypoxia, increases in cerebral blood flow maintain brain oxygen delivery. Here, we describe a mechanism of brain oxygen sensing that mediates the dilation of intraparenchymal cerebral blood vessels in response to reductions in oxygen supply. In vitro and in vivo experiments conducted in rodent models show that during hypoxia, cortical astrocytes produce the potent vasodilator nitric oxide (NO) via nitrite reduction in mitochondria. Inhibition of mitochondrial respiration mimics, but also occludes, the effect of hypoxia on NO production in astrocytes. Astrocytes display high expression of the molybdenum-cofactor-containing mitochondrial enzyme sulfite oxidase, which can catalyze nitrite reduction in hypoxia. Replacement of molybdenum with tungsten or knockdown of sulfite oxidase expression in astrocytes blocks hypoxia-induced NO production by these glial cells and reduces the cerebrovascular response to hypoxia. These data identify astrocyte mitochondria as brain oxygen sensors that regulate cerebral blood flow during hypoxia via release of nitric oxide.


Assuntos
Hipóxia Encefálica , Nitritos , Humanos , Nitritos/metabolismo , Astrócitos/metabolismo , Óxido Nítrico/metabolismo , Molibdênio/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Mitocôndrias/metabolismo , Hipóxia Encefálica/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Circulação Cerebrovascular
14.
Nat Commun ; 14(1): 8380, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104196

RESUMO

How aging affects cells of the human brain active milieu remains largely unknown. Here, we analyze astrocytes and neurons in the neocortical tissue of younger (22-50 years) and older (51-72 years) adults. Aging decreases the amount of reduced mitochondrial cytochromes in astrocytes but not neurons. The protein-to-lipid ratio decreases in astrocytes and increases in neurons. Aged astrocytes show morphological atrophy quantified by the decreased length of branches, decreased volume fraction of leaflets, and shrinkage of the anatomical domain. Atrophy correlates with the loss of gap junction coupling between astrocytes and increased input resistance. Aging is accompanied by the upregulation of glial fibrillary acidic protein (GFAP) and downregulation of membrane-cytoskeleton linker ezrin associated with leaflets. No significant changes in neuronal excitability or spontaneous inhibitory postsynaptic signaling is observed. Thus, brain aging is associated with the impaired morphological presence and mitochondrial malfunction of cortical astrocytes, but not neurons.


Assuntos
Astrócitos , Córtex Cerebral , Humanos , Idoso , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Atrofia/metabolismo
15.
J Neurosci ; 31(50): 18327-37, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22171036

RESUMO

Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative metabolism via mitochondrial signaling, but whether this also occurs in the intact brain is unknown. Here we applied a pharmacological approach to dissect the effects of ionic currents and cytosolic Ca(2+) rises of neuronal origin on activity-dependent rises in CMRO(2). We used two-photon microscopy and current source density analysis to study real-time Ca(2+) dynamics and transmembrane ionic currents in relation to CMRO(2) in the mouse cerebellar cortex in vivo. We report a direct correlation between CMRO(2) and summed (i.e., the sum of excitatory, negative currents during the whole stimulation period) field EPSCs (∑fEPSCs) in Purkinje cells (PCs) in response to stimulation of the climbing fiber (CF) pathway. Blocking stimulus-evoked rises in cytosolic Ca(2+) in PCs with the P/Q-type channel blocker ω-agatoxin-IVA (ω-AGA), or the GABA(A) receptor agonist muscimol, did not lead to a time-locked reduction in CMRO(2), and excitatory synaptic or action potential currents. During stimulation, neither ω-AGA or (µ-oxo)-bis-(trans-formatotetramine-ruthenium) (Ru360), a mitochondrial Ca(2+) uniporter inhibitor, affected the ratio of CMRO(2) to fEPSCs or evoked local field potentials. However, baseline CBF and CMRO(2) decreased gradually with Ru360. Our data suggest that in vivo activity-dependent rises in CMRO(2) are correlated with synaptic currents and postsynaptic spiking in PCs. Our study did not reveal a unique role of neuronal cytosolic Ca(2+) signals in controlling CMRO(2) increases during CF stimulation.


Assuntos
Cálcio/metabolismo , Cerebelo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Consumo de Oxigênio/fisiologia , Células de Purkinje/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cerebelo/irrigação sanguínea , Cerebelo/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Camundongos , Consumo de Oxigênio/efeitos dos fármacos , Células de Purkinje/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , ômega-Agatoxina IVA/farmacologia
16.
Acta Physiol (Oxf) ; 236(1): e13847, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35653278

RESUMO

AIM: A high-fat diet (HFD) is generally considered to negatively influence the body, the brain, and cognition. Nonetheless, fat and fatty acids are essential for nourishing and constructing brain tissue. Astrocytes are central for lipolysis and fatty acids metabolism. We tested how HFD affects astrocyte metabolism, morphology, and physiology. METHODS: We used Raman microspectroscopy to assess the redox state of mitochondria and lipid content in astrocytes and neurons in hippocampal slices of mice subjected to HFD. Astrocytes were loaded with fluorescent dye through patch pipette for morphological analysis. Whole-cell voltage-clamp recordings were performed to measure transporter and potassium currents. Western blot analysis quantified the expression of astrocyte-specific proteins. Field potential recordings measured the magnitude of long-term potentiation (LTP). Open filed test was performed to evaluate the effect of HFD on animal behavior. RESULTS: We found that exposure of young mice to 1 month of HFD increases lipid content and relative amount of reduced cytochromes in astrocytes but not in neurons. Metabolic changes were paralleled with an enlargement of astrocytic territorial domains due to an increased outgrowth of branches and leaflets. Astrocyte remodeling was associated with an increase in expression of ezrin and with no changes in glial fibrillary acidic protein (GFAP), glutamate transporter-1 (GLT-1), and glutamine synthetase (GS). Such physiological (non-reactive) enlargement of astrocytes in the brain active milieu promoted glutamate clearance and LTP and translated into behavioral changes. CONCLUSION: Dietary fat intake is not invariably harmful and might exert beneficial effects depending on the biological context.


Assuntos
Astrócitos , Dieta Hiperlipídica , Animais , Astrócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Lipídeos , Camundongos , Plasticidade Neuronal
17.
Front Cell Neurosci ; 15: 645068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746715

RESUMO

Neuronal firing and neuron-to-neuron synaptic wiring are currently widely described as orchestrated by astrocytes-elaborately ramified glial cells tiling the cortical and hippocampal space into non-overlapping domains, each covering hundreds of individual dendrites and hundreds thousands synapses. A key component to astrocytic signaling is the dynamics of cytosolic Ca2+ which displays multiscale spatiotemporal patterns from short confined elemental Ca2+ events (puffs) to Ca2+ waves expanding through many cells. Here, we synthesize the current understanding of astrocyte morphology, coupling local synaptic activity to astrocytic Ca2+ in perisynaptic astrocytic processes and morphology-defined mechanisms of Ca2+ regulation in a distributed model. To this end, we build simplified realistic data-driven spatial network templates and compile model equations as defined by local cell morphology. The input to the model is spatially uncorrelated stochastic synaptic activity. The proposed modeling approach is validated by statistics of simulated Ca2+ transients at a single cell level. In multicellular templates we observe regular sequences of cell entrainment in Ca2+ waves, as a result of interplay between stochastic input and morphology variability between individual astrocytes. Our approach adds spatial dimension to the existing astrocyte models by employment of realistic morphology while retaining enough flexibility and scalability to be embedded in multiscale heterocellular models of neural tissue. We conclude that the proposed approach provides a useful description of neuron-driven Ca2+-activity in the astrocyte syncytium.

18.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119034, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33836176

RESUMO

We analysed spatiotemporal properties of Ca2+ signals in protoplasmic astrocytes in the CA1 stratum radiatum of hippocampal slices from young (2-3 months old) mice housed in control conditions or exposed to a caloric restriction (CR) diet for one month. The astrocytic Ca2+ events became shorter in duration and smaller in size; they also demonstrated reduced velocity of expansion and shrinkage following CR. At the same time, Ca2+ signals in the astrocytes from the CR animals demonstrated higher amplitude and the faster rise and decay rates. These changes can be attributed to CR-induced morphological remodelling and uncoupling of astrocytes described in our previous study. CR-induced changes in the parameters of Ca2+ activity were partially reversed by inhibition of gap junctions/hemichannels with carbenoxolone (CBX). The effect of CBX on Ca2+ activity in CR-animals was unexpected because the diet already decreases gap junctional coupling in astrocytic syncytia. It may reflect the blockade of hemichannels also sensitive to this drug. Thus, CR-induced morphological remodelling of astrocytes is at least partly responsible for changes in the pattern of Ca2+ activity in the astrocytic network. How such changes in spatiotemporal Ca2+ landscape can translate into astrocytic physiology and neuron-glia interactions remains a matter for future studies.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/fisiologia , Restrição Calórica/métodos , Dieta/métodos , Junções Comunicantes/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neurônios/metabolismo , Análise Espaço-Temporal
19.
Aging Cell ; 20(3): e13334, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33675569

RESUMO

Little is known about age-dependent changes in structure and function of astrocytes and of the impact of these on the cognitive decline in the senescent brain. The prevalent view on the age-dependent increase in reactive astrogliosis and astrocytic hypertrophy requires scrutiny and detailed analysis. Using two-photon microscopy in conjunction with 3D reconstruction, Sholl and volume fraction analysis, we demonstrate a significant reduction in the number and the length of astrocytic processes, in astrocytic territorial domains and in astrocyte-to-astrocyte coupling in the aged brain. Probing physiology of astrocytes with patch clamp, and Ca2+ imaging revealed deficits in K+ and glutamate clearance and spatiotemporal reorganisation of Ca2+ events in old astrocytes. These changes paralleled impaired synaptic long-term potentiation (LTP) in hippocampal CA1 in old mice. Our findings may explain the astroglial mechanisms of age-dependent decline in learning and memory.


Assuntos
Envelhecimento/patologia , Astrócitos/patologia , Plasticidade Neuronal , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Tamanho Celular , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Longevidade/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Potássio/metabolismo
20.
Cell Death Dis ; 11(3): 208, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32231202

RESUMO

Calorie-restricted (CR) diet has multiple beneficial effects on brain function. Here we report morphological and functional changes in hippocampal astrocytes in 3-months-old mice subjected to 1 month of the diet. Whole-cell patch-clamp recordings were performed in the CA1 stratum (str.) radiatum astrocytes of hippocampal slices. The cells were also loaded with fluorescent dye through the patch pipette. CR did not affect the number of astrocytic branches but increased the volume fraction (VF) of distal perisynaptic astrocytic leaflets. The astrocyte growth did not lead to a decrease in the cell input resistance, which may be attributed to a decrease in astrocyte coupling through the gap junctions. Western blotting revealed a decrease in the expression of Cx43 but not Cx30. Immunocytochemical analysis demonstrated a decrease in the density and size of Cx43 clusters. Cx30 cluster density did not change, while their size increased in the vicinity of astrocytic soma. CR shortened K+ and glutamate transporter currents in astrocytes in response to 5 × 50 Hz Schaffer collateral stimulation. However, no change in the expression of astrocytic glutamate transporter 1 (GLT-1) was observed, while the level of glutamine synthetase (GS) decreased. These findings suggest that enhanced enwrapping of synapses by the astrocytic leaflets reduces glutamate and K+ spillover. Reduced spillover led to a decreased contribution of extrasynaptic N2B containing N-methyl-D-aspartate receptors (NMDARs) to the tail of burst-induced EPSCs. The magnitude of long-term potentiation (LTP) in the glutamatergic CA3-CA1 synapses was significantly enhanced after CR. This enhancement was abolished by N2B-NMDARs antagonist. Our findings suggest that astrocytic morphofunctional remodeling is responsible for enhanced synaptic plasticity, which provides a basis for improved learning and memory reported after CR.


Assuntos
Astrócitos/metabolismo , Restrição Calórica/métodos , Hipocampo/imunologia , Plasticidade Neuronal/imunologia , Animais , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa