Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 575(7783): 464-467, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748724

RESUMO

Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe1. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow-produced by the interaction between the ejected matter and the circumburst medium-slows down, and a gradual decrease in brightness is observed2. GRBs typically emit most of their energy via γ-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments3. However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive4. Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow-ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and γ-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies.

2.
Phys Rev Lett ; 121(24): 241101, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608723

RESUMO

The gamma-ray sky has been observed with unprecedented accuracy in the last decade by the Fermi -large area telescope (LAT), allowing us to resolve and understand the high-energy Universe. The nature of the remaining unresolved emission [unresolved gamma-ray background (UGRB)] below the LAT source detection threshold can be uncovered by characterizing the amplitude and angular scale of the UGRB fluctuation field. This Letter presents a measurement of the UGRB autocorrelation angular power spectrum based on eight years of Fermi-LAT Pass 8 data products. The analysis is designed to be robust against contamination from resolved sources and noise systematics. The sensitivity to subthreshold sources is greatly enhanced with respect to previous measurements. We find evidence (with ∼3.7σ significance) that the scenario in which two classes of sources contribute to the UGRB signal is favored over a single class. A double power law with exponential cutoff can explain the anisotropy energy spectrum well, with photon indices of the two populations being 2.55±0.23 and 1.86±0.15.

3.
Phys Rev Lett ; 120(20): 201101, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864326

RESUMO

Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004-2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section ⟨σv⟩ for monoenergetic DM lines at the level of 4×10^{-28} cm^{3} s^{-1} at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV-70 TeV. Ground-based γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.

4.
Phys Rev Lett ; 117(15): 151302, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768338

RESUMO

A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95% C.L. the presence of a 130 GeV line (at l=-1.5°, b=0° and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. RESULTS: No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.

5.
Phys Rev Lett ; 117(11): 111301, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661677

RESUMO

The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σv⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σv⟩ values of 6×10^{-26} cm^{3} s^{-1} in the W^{+}W^{-} channel for a DM particle mass of 1.5 TeV, and 2×10^{-26} cm^{3} s^{-1} in the τ^{+}τ^{-} channel for a 1 TeV mass. For the first time, ground-based γ-ray observations have reached sufficient sensitivity to probe ⟨σv⟩ values expected from the thermal relic density for TeV DM particles.

6.
Phys Rev Lett ; 116(16): 161101, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27152783

RESUMO

We report on the search for spectral irregularities induced by oscillations between photons and axionlike-particles (ALPs) in the γ-ray spectrum of NGC 1275, the central galaxy of the Perseus cluster. Using 6 years of Fermi Large Area Telescope data, we find no evidence for ALPs and exclude couplings above 5×10^{-12} GeV^{-1} for ALP masses 0.5≲m_{a}≲5 neV at 95% confidence. The limits are competitive with the sensitivity of planned laboratory experiments, and, together with other bounds, strongly constrain the possibility that ALPs can reduce the γ-ray opacity of the Universe.

7.
Phys Rev Lett ; 116(15): 151105, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27127954

RESUMO

The Fermi Large Area Telescope (LAT) Collaboration has recently released a catalog of 360 sources detected above 50 GeV (2FHL). This catalog was obtained using 80 months of data re-processed with Pass 8, the newest event-level analysis, which significantly improves the acceptance and angular resolution of the instrument. Most of the 2FHL sources at high Galactic latitude are blazars. Using detailed Monte Carlo simulations, we measure, for the first time, the source count distribution, dN/dS, of extragalactic γ-ray sources at E>50 GeV and find that it is compatible with a Euclidean distribution down to the lowest measured source flux in the 2FHL (∼8×10^{-12} ph cm^{-2} s^{-1}). We employ a one-point photon fluctuation analysis to constrain the behavior of dN/dS below the source detection threshold. Overall, the source count distribution is constrained over three decades in flux and found compatible with a broken power law with a break flux, S_{b}, in the range [8×10^{-12},1.5×10^{-11}] ph cm^{-2} s^{-1} and power-law indices below and above the break of α_{2}∈[1.60,1.75] and α_{1}=2.49±0.12, respectively. Integration of dN/dS shows that point sources account for at least 86_{-14}^{+16}% of the total extragalactic γ-ray background. The simple form of the derived source count distribution is consistent with a single population (i.e., blazars) dominating the source counts to the minimum flux explored by this analysis. We estimate the density of sources detectable in blind surveys that will be performed in the coming years by the Cherenkov Telescope Array.

8.
Phys Rev Lett ; 115(23): 231301, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684107

RESUMO

The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100 GeV annihilating via quark and τ-lepton channels.

9.
Phys Rev Lett ; 114(8): 081301, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768750

RESUMO

An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9 h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300 GeV to ∼10 TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24} cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4 TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.

10.
Nature ; 462(7271): 331-4, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19865083

RESUMO

A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximately 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximately 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves. Here we report the detection of emission up to approximately 31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

11.
Phys Rev Lett ; 108(1): 011103, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22304252

RESUMO

We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 GeV. We confirm that the fraction rises with energy in the 20-100 GeV range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.

12.
Phys Rev Lett ; 107(24): 241302, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22242987

RESUMO

Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26) cm3 s(-1) at 5 GeV to about 5×10(-23) cm3 s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26) cm3 s(-1) for a purely s-wave cross section), without assuming additional boost factors.

13.
Phys Rev Lett ; 104(10): 101101, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366411

RESUMO

We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

14.
Phys Rev Lett ; 104(9): 091302, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366979

RESUMO

Dark matter (DM) particle annihilation or decay can produce monochromatic gamma rays readily distinguishable from astrophysical sources. gamma-ray line limits from 30 to 200 GeV obtained from 11 months of Fermi Large Area Space Telescope data from 20-300 GeV are presented using a selection based on requirements for a gamma-ray line analysis, and integrated over most of the sky. We obtain gamma-ray line flux upper limits in the range 0.6-4.5x10{-9} cm{-2} s{-1}, and give corresponding DM annihilation cross-section and decay lifetime limits. Theoretical implications are briefly discussed.

15.
Phys Rev Lett ; 103(25): 251101, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20366246

RESUMO

The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

16.
Astrophys J ; 863(2)2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35027772

RESUMO

We use joint observations by the Neil Gehrels Swift X-ray Telescope (XRT) and the Fermi Large Area Telescope (LAT) of gamma-ray burst (GRB) afterglows to investigate the nature of the long-lived high-energy emission observed by Fermi LAT. Joint broadband spectral modeling of XRT and LAT data reveal that LAT non-detections of bright X-ray afterglows are consistent with a cooling break in the inferred electron synchrotron spectrum below the LAT and/or XRT energy ranges. Such a break is sufficient to suppress the high-energy emission so as to be below the LAT detection threshold. By contrast, LAT-detected bursts are best fit by a synchrotron spectrum with a cooling break that lies either between or above the XRT and LAT energy ranges. We speculate that the primary difference between GRBs with LAT afterglow detections and the non-detected population may be in the type of circumstellar environment in which these bursts occur, with late-time LAT detections preferentially selecting GRBs that occur in low wind-like circumburst density profiles. Furthermore, we find no evidence of high-energy emission in the LAT-detected population significantly in excess of the flux expected from the electron synchrotron spectrum fit to the observed X-ray emission. The lack of excess emission at high energies could be due to a shocked external medium in which the energy density in the magnetic field is stronger than or comparable to that of the relativistic electrons behind the shock, precluding the production of a dominant synchrotron self-Compton (SSC) component in the LAT energy range. Alternatively, the peak of the SSC emission could be beyond the 0.1-100 GeV energy range considered for this analysis.

17.
Endosc Int Open ; 4(6): E730-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27556085

RESUMO

INTRODUCTION: Self-expanding metal stents (SEMS) are commonly used in the palliation of dysphagia in patients with inoperable esophageal carcinoma. However, they predispose to gastroesophageal reflux when deployed across the gastroesophageal junction. The aims of this study were to: 1) assess the influence of the antireflux valve on trans-prosthetic reflux (primary outcome); and 2) compare the results of SEMS with and without antireflux valve in terms of reflux symptoms, quality of life (QOL), improvement of dysphagia and adverse events (secondary outcomes). PATIENTS AND METHODS: Thirty-eight patients were enrolled in nine centers. Carcinomas were locally advanced (47 %) or metastatic. After randomization, patients received either a covered SEMS with antireflux valve (n = 20) or a similar type of SEMS with no antireflux device but assigned to standard proton pump inhibitor therapy and postural advice (n = 18). Trans-prosthetic reflux was assessed at day 2 using a radiological score based on barium esophagography performed after Trendelenburg maneuver and graded from 0 (no reflux) to 12 (maximum). Monthly telephone interviews were conducted for Organisation Mondiale de la Santé (OMS) scoring from 0 (excellent) to 5 (poor), QOL assessment (based on the Reflux-Qual Simplifié scoring system) from 0 (poor) to 100 (excellent), dysphagia scoring from 0 (no dysphagia) to 5 (complete dysphagia) and regurgitation scoring from 0 (no regurgitation) to 16 (maximum). RESULTS: No difference was noted in terms of age, sex, size of lesion, prosthesis length or need for dilation prior to SEMS placement. No difficulty in placing SEMS nor complications were noted. Radiological scores of reflux were found to be significantly lower in patients with an antireflux stent compared to the conventional stent and associated measures. The regurgitation scores were significantly decreased in patients with antireflux stents during the first 2 months after stent placement and thereafter, they were similar in the two groups. QOL and dysphagia were improved in both groups. Survival rates were comparable in the two groups. CONCLUSIONS: No difference was observed between the two types of SEMS regarding the palliation of dysphagia and improvement of QOL. However, SEMS with an antireflux valve were more effective in preventing trans-prosthetic gastroesophageal reflux but at the cost of an increased likehood of minor adverse events (migrations and/or obstruction of the SEMS).

18.
Phys Rev D ; 93(8): 082001, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32743154

RESUMO

We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

19.
Neurogastroenterol Motil ; 27(1): 40-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25388954

RESUMO

BACKGROUND: Sacral nerve stimulation (SNS) is a validated treatment for fecal incontinence, although the mechanism of action remains unknown. Short-term effects of SNS on the intestinal epithelial barrier (IEB) have been reported previously. The aim of our study was to assess the impact of a 1-week SNS on the IEB in a preclinical model. METHODS: Fourteen pigs were implanted for bilateral SNS. Seven pigs received 7-day stimulation, whereas the remaining animals received no stimulation. Rectal biopsies were performed before and after SNS. We assessed IEB permeability, mucosal tight junction and cytokine mRNA expression, IL-6 production in an organotypic culture model, and neuromuscular transmission in muscle strips. KEY RESULTS: IEB permeability was not modified after stimulation, as compared with baseline. The PAR-induced increase in IEB permeability and the mucosal ZO-1 mRNA decrease observed in the controls were not observed into the stimulated group. Cytokine overexpression was not observed in the mucosa in either group. SNS decreased IL-6 production in the organotypic culture model. In the stimulated group, the area-under-the-curve of the EFS-induced contractile response was significantly increased. CONCLUSIONS & INFERENCES: The main conclusions of our work are (i) the successful development of a preclinical model of bilateral SNS and (ii) in physiological conditions, 1-week SNS did not lead to functional changes in the mucosa. While under stress-induced conditions, SNS modified the properties of the IEB, leading to a decrease in its permeability. Neuromuscular transmission was modified by SNS, leading to neuronal hyperexcitability. These results add evidence to the reinforcement of the IEB by SNS.


Assuntos
Estimulação Elétrica , Mucosa Intestinal/metabolismo , Modelos Animais , Reto/fisiologia , Sacro/inervação , Animais , Citocinas/metabolismo , Epitélio/metabolismo , Masculino , Permeabilidade , RNA Mensageiro/metabolismo , Reto/inervação , Reto/metabolismo , Suínos , Transmissão Sináptica , Junções Íntimas/metabolismo , Fatores de Tempo
20.
Science ; 343(6166): 51-4, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24263132

RESUMO

Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa