Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Pathol ; 190(7): 1491-1504, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277893

RESUMO

Quantitative assessment of spatial relations between tumor and tumor-infiltrating lymphocytes (TIL) is increasingly important in both basic science and clinical aspects of breast cancer research. We have developed and evaluated convolutional neural network analysis pipelines to generate combined maps of cancer regions and TILs in routine diagnostic breast cancer whole slide tissue images. The combined maps provide insight about the structural patterns and spatial distribution of lymphocytic infiltrates and facilitate improved quantification of TILs. Both tumor and TIL analyses were evaluated by using three convolutional neural network networks (34-layer ResNet, 16-layer VGG, and Inception v4); the results compared favorably with those obtained by using the best published methods. We have produced open-source tools and a public data set consisting of tumor/TIL maps for 1090 invasive breast cancer images from The Cancer Genome Atlas. The maps can be downloaded for further downstream analyses.


Assuntos
Neoplasias da Mama/patologia , Aprendizado Profundo , Linfócitos do Interstício Tumoral/patologia , Neoplasias da Mama/imunologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/imunologia , Programa de SEER
2.
J Digit Imaging ; 32(3): 521-533, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30402669

RESUMO

We propose a software platform that integrates methods and tools for multi-objective parameter auto-tuning in tissue image segmentation workflows. The goal of our work is to provide an approach for improving the accuracy of nucleus/cell segmentation pipelines by tuning their input parameters. The shape, size, and texture features of nuclei in tissue are important biomarkers for disease prognosis, and accurate computation of these features depends on accurate delineation of boundaries of nuclei. Input parameters in many nucleus segmentation workflows affect segmentation accuracy and have to be tuned for optimal performance. This is a time-consuming and computationally expensive process; automating this step facilitates more robust image segmentation workflows and enables more efficient application of image analysis in large image datasets. Our software platform adjusts the parameters of a nuclear segmentation algorithm to maximize the quality of image segmentation results while minimizing the execution time. It implements several optimization methods to search the parameter space efficiently. In addition, the methodology is developed to execute on high-performance computing systems to reduce the execution time of the parameter tuning phase. These capabilities are packaged in a Docker container for easy deployment and can be used through a friendly interface extension in 3D Slicer. Our results using three real-world image segmentation workflows demonstrate that the proposed solution is able to (1) search a small fraction (about 100 points) of the parameter space, which contains billions to trillions of points, and improve the quality of segmentation output by × 1.20, × 1.29, and × 1.29, on average; (2) decrease the execution time of a segmentation workflow by up to 11.79× while improving output quality; and (3) effectively use parallel systems to accelerate parameter tuning and segmentation phases.


Assuntos
Núcleo Celular , Rastreamento de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Software , Interface Usuário-Computador , Fluxo de Trabalho
3.
NPJ Precis Oncol ; 8(1): 9, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200147

RESUMO

Digital pathology has seen a proliferation of deep learning models in recent years, but many models are not readily reusable. To address this challenge, we developed WSInfer: an open-source software ecosystem designed to streamline the sharing and reuse of deep learning models for digital pathology. The increased access to trained models can augment research on the diagnostic, prognostic, and predictive capabilities of digital pathology.

4.
Cancer Inform ; 23: 11769351231223806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322427

RESUMO

Large-scale, multi-site collaboration is becoming indispensable for a wide range of research and clinical activities in oncology. To facilitate the next generation of advances in cancer biology, precision oncology and the population sciences it will be necessary to develop and implement data management and analytic tools that empower investigators to reliably and objectively detect, characterize and chronicle the phenotypic and genomic changes that occur during the transformation from the benign to cancerous state and throughout the course of disease progression. To facilitate these efforts it is incumbent upon the informatics community to establish the workflows and architectures that automate the aggregation and organization of a growing range and number of clinical data types and modalities ranging from new molecular and laboratory tests to sophisticated diagnostic imaging studies. In an attempt to meet those challenges, leading health care centers across the country are making steep investments to establish enterprise-wide, data warehouses. A significant limitation of many data warehouses, however, is that they are designed to support only alphanumeric information. In contrast to those traditional designs, the system that we have developed supports automated collection and mining of multimodal data including genomics, digital pathology and radiology images. In this paper, our team describes the design, development and implementation of a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide actionable insight into the underlying characteristics of the tumor environment that would not be revealed using standard methods and tools. The System features a flexible Extract, Transform and Load (ETL) interface that enables it to adapt to aggregate data originating from different clinical and research sources depending on the specific EHR and other data sources utilized at a given deployment site.

5.
J Pathol Inform ; 13: 5, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136672

RESUMO

BACKGROUND: Population-based state cancer registries are an authoritative source for cancer statistics in the United States. They routinely collect a variety of data, including patient demographics, primary tumor site, stage at diagnosis, first course of treatment, and survival, on every cancer case that is reported across all U.S. states and territories. The goal of our project is to enrich NCI's Surveillance, Epidemiology, and End Results (SEER) registry data with high-quality population-based biospecimen data in the form of digital pathology, machine-learning-based classifications, and quantitative histopathology imaging feature sets (referred to here as Pathomics features). MATERIALS AND METHODS: As part of the project, the underlying informatics infrastructure was designed, tested, and implemented through close collaboration with several participating SEER registries to ensure consistency with registry processes, computational scalability, and ability to support creation of population cohorts that span multiple sites. Utilizing computational imaging algorithms and methods to both generate indices and search for matches makes it possible to reduce inter- and intra-observer inconsistencies and to improve the objectivity with which large image repositories are interrogated. RESULTS: Our team has created and continues to expand a well-curated repository of high-quality digitized pathology images corresponding to subjects whose data are routinely collected by the collaborating registries. Our team has systematically deployed and tested key, visual analytic methods to facilitate automated creation of population cohorts for epidemiological studies and tools to support visualization of feature clusters and evaluation of whole-slide images. As part of these efforts, we are developing and optimizing advanced search and matching algorithms to facilitate automated, content-based retrieval of digitized specimens based on their underlying image features and staining characteristics. CONCLUSION: To meet the challenges of this project, we established the analytic pipelines, methods, and workflows to support the expansion and management of a growing repository of high-quality digitized pathology and information-rich, population cohorts containing objective imaging and clinical attributes to facilitate studies that seek to discriminate among different subtypes of disease, stratify patient populations, and perform comparisons of tumor characteristics within and across patient cohorts. We have also successfully developed a suite of tools based on a deep-learning method to perform quantitative characterizations of tumor regions, assess infiltrating lymphocyte distributions, and generate objective nuclear feature measurements. As part of these efforts, our team has implemented reliable methods that enable investigators to systematically search through large repositories to automatically retrieve digitized pathology specimens and correlated clinical data based on their computational signatures.

6.
J Pathol Inform ; 11: 29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163255

RESUMO

BACKGROUND: Whole-slide images (WSI) are produced by a high-resolution scanning of pathology glass slides. There are a large number of whole-slide imaging scanners, and the resulting images are frequently larger than 100,000 × 100,000 pixels which typically image 100,000 to one million cells, ranging from several hundred megabytes to many gigabytes in size. AIMS AND OBJECTIVES: Provide HTTP access over the web to Whole Slide Image tiles that do not have localized tiling servers but only basic HTTP access. Move all image decode and tiling functions to calling agent (ImageBox). METHODS: Current software systems require tiling image servers to be installed on systems providing local disk access to these images. ImageBox2 breaks this requirement by accessing tiles from remote HTTP source via byte-level HTTP range requests. This method does not require changing the client software as the operation is relegated to the ImageBox2 server which is local (or remote) to the client and can access tiles from remote images that have no server of their own such as Amazon S3 hosted images. That is, it provides a data service [on a server that does not need to be managed], the definition of serverless execution model increasingly favored by cloud computing infrastructure. CONCLUSIONS: The specific methodology described and assessed in this report preserves normal client connection semantics by enabling cloud-friendly tiling, promoting a web of http connected whole-slide images from a wide-ranging number of sources, and providing tiling where local tiling servers would have been otherwise unavailable.

7.
JCO Clin Cancer Inform ; 4: 491-499, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479186

RESUMO

PURPOSE: Precision medicine requires an understanding of individual variability, which can only be acquired from large data collections such as those supported by the Cancer Imaging Archive (TCIA). We have undertaken a program to extend the types of data TCIA can support. This, in turn, will enable TCIA to play a key role in precision medicine research by collecting and disseminating high-quality, state-of-the-art, quantitative imaging data that meet the evolving needs of the cancer research community. METHODS: A modular technology platform is presented that would allow existing data resources, such as TCIA, to evolve into a comprehensive data resource that meets the needs of users engaged in translational research for imaging-based precision medicine. This Platform for Imaging in Precision Medicine (PRISM) helps streamline the deployment and improve TCIA's efficiency and sustainability. More importantly, its inherent modular architecture facilitates a piecemeal adoption by other data repositories. RESULTS: PRISM includes services for managing radiology and pathology images and features and associated clinical data. A semantic layer is being built to help users explore diverse collections and pool data sets to create specialized cohorts. PRISM includes tools for image curation and de-identification. It includes image visualization and feature exploration tools. The entire platform is distributed as a series of containerized microservices with representational state transfer interfaces. CONCLUSION: PRISM is helping modernize, scale, and sustain the technology stack that powers TCIA. Repositories can take advantage of individual PRISM services such as de-identification and quality control. PRISM is helping scale image informatics for cancer research at a time when the size, complexity, and demands to integrate image data with other precision medicine data-intensive commons are mounting.


Assuntos
Medicina de Precisão , Radiologia , Diagnóstico por Imagem , Humanos , Controle de Qualidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-28815113

RESUMO

Cancer is a complex multifactorial disease state and the ability to anticipate and steer treatment results will require information synthesis across multiple scales from the host to the molecular level. Radiomics and Pathomics, where image features are extracted from routine diagnostic Radiology and Pathology studies, are also evolving as valuable diagnostic and prognostic indicators in cancer. This information explosion provides new opportunities for integrated, multi-scale investigation of cancer, but also mandates a need to build systematic and integrated approaches to manage, query and mine combined Radiomics and Pathomics data. In this paper, we describe a suite of tools and web-based applications towards building a comprehensive framework to support the generation, management and interrogation of large volumes of Radiomics and Pathomics feature sets and the investigation of correlations between image features, molecular data, and clinical outcome.

9.
Cancer Res ; 77(21): e79-e82, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092946

RESUMO

Well-curated sets of pathology image features will be critical to clinical studies that aim to evaluate and predict treatment responses. Researchers require information synthesized across multiple biological scales, from the patient to the molecular scale, to more effectively study cancer. This article describes a suite of services and web applications that allow users to select regions of interest in whole slide tissue images, run a segmentation pipeline on the selected regions to extract nuclei and compute shape, size, intensity, and texture features, store and index images and analysis results, and visualize and explore images and computed features. All the services are deployed as containers and the user-facing interfaces as web-based applications. The set of containers and web applications presented in this article is used in cancer research studies of morphologic characteristics of tumor tissues. The software is free and open source. Cancer Res; 77(21); e79-82. ©2017 AACR.


Assuntos
Interpretação de Imagem Assistida por Computador , Neoplasias/patologia , Software , Humanos , Internet , Interface Usuário-Computador
10.
AMIA Annu Symp Proc ; 2016: 342-351, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28269829

RESUMO

The "Box model" allows users with no particular training in informatics, or access to specialized infrastructure, operate generic cloud computing resources through a temporary URI dereferencing mechanism known as "drop-file-picker API" ("picker API" for sort). This application programming interface (API) was popularized in the web app development community by DropBox, and is now a consumer-facing feature of all major cloud computing platforms such as Box.com, Google Drive and Amazon S3. This reports describes a prototype web service application that uses picker APIs to expose a new, "cloudified", API tailored for image analysis, without compromising the private governance of the data exposed. In order to better understand this cross-platform cloud computing landscape, we first measured the time for both transfer and traversing of large image files generated by whole slide imaging (WSI) in Digital Pathology. The verification that there is extensive interconnectivity between cloud resources let to the development of a prototype software application that exposes an image-traversing REST API to image files stored in any of the consumer-facing "boxes". In summary, an image file can be upload/synchronized into a any cloud resource with a file picker API and the prototype service described here will expose an HTTP REST API that remains within the safety of the user's own governance. The open source prototype is publicly available at sbu-bmi.github.io/imagebox. Availability The accompanying prototype application is made publicly available, fully functional, with open source, at http://sbu-bmi.github.io/imagebox://sbu-bmi.github.io/imagebox. An illustrative webcasted use of this Web App is included with the project codebase at https://github.com/SBU-BMI/imageboxs://github.com/SBU-BMI/imagebox.


Assuntos
Computação em Nuvem , Sistemas Computacionais , Processamento de Imagem Assistida por Computador , Software , Internet
11.
Artigo em Inglês | MEDLINE | ID: mdl-24303330

RESUMO

Translational science, today, involves multidisciplinary teams of scientists rather than single scientists. Teams facilitate biologically meaningful and clinically consequential breakthroughs. There are a myriad of sources of data about investigators, physicians, research resources, clinical encounters, and expertise to promote team interaction; however, much of this information is not connected and is left siloed. Large amounts of data have been published as Linked Data (LD), but there still remains a significant gap in the representation and connection of research resources and clinical expertise data. The CTSAconnect project addresses the problem of fragmentation and incompatible coding of information by creating a Semantic Framework that facilitates the production and consumption of LD about biomedical research resources, clinical activities, as well as investigator and physician expertise.

12.
Bioinformatics ; 22(4): 485-92, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16368773

RESUMO

MOTIVATION: There has been an explosion of interest in the role of mitochondria in programmed cell death and other fundamental pathological processes underlying the development of human diseases. Nevertheless, the inventory of mitochondrial proteins encoded in the nuclear genome remains incomplete, providing an impediment to mitochondrial research at the interface with systems biology. We created the MiGenes database to further define the scope of the mitochondrial proteome in humans and model organisms including mice, rats, flies and worms as well as budding and fission yeasts. MiGenes is intended to stimulate mitochondrial research using model organisms. SUMMARY: MiGenes is a large-scale relational database that is automatically updated to keep pace with advances in mitochondrial proteomics and is curated to assure that the designation of proteins as mitochondrial reflects gene ontology (GO) annotations supported by high-quality evidence codes. A set of postulates is proposed to help define which proteins are authentic components of mitochondria. MiGenes incorporates >1160 new GO annotations to human, mouse and rat protein records, 370 of which represent the first GO annotation reflecting a mitochondrial localization. MiGenes employs a flexible search interface that permits batchwise accession number searches to support high-throughput proteomic studies. A web interface is provided to permit members of the mitochondrial research community to suggest modifications in protein annotations or mitochondrial status.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas , Documentação/métodos , Armazenamento e Recuperação da Informação/métodos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Processamento de Linguagem Natural , Animais , Humanos , Proteínas Mitocondriais/classificação , Especificidade da Espécie , Vocabulário Controlado
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa