Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 610(7931): 366-372, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198801

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses and spreads by metastasis to the liver1. Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I) support2,3 or restrain the progression of PDAC and may impede blood supply and nutrient availability4. The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers to escape nutrient limitation, remain poorly understood. Here we show that matrix-metalloprotease-cleaved Col I (cCol I) and intact Col I (iCol I) exert opposing effects on PDAC bioenergetics, macropinocytosis, tumour growth and metastasis. Whereas cCol I activates discoidin domain receptor 1 (DDR1)-NF-κB-p62-NRF2 signalling to promote the growth of PDAC, iCol I triggers the degradation of DDR1 and restrains the growth of PDAC. Patients whose tumours are enriched for iCol I and express low levels of DDR1 and NRF2 have improved median survival compared to those whose tumours have high levels of cCol I, DDR1 and NRF2. Inhibition of the DDR1-stimulated expression of NF-κB or mitochondrial biogenesis blocks tumorigenesis in wild-type mice, but not in mice that express MMP-resistant Col I. The diverse effects of the tumour stroma on the growth and metastasis of PDAC and on the survival of patients are mediated through the Col I-DDR1-NF-κB-NRF2 mitochondrial biogenesis pathway, and targeting components of this pathway could provide therapeutic opportunities.


Assuntos
Carcinoma Ductal Pancreático , Colágeno Tipo I , Receptor com Domínio Discoidina 1 , Transdução de Sinais , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Taxa de Sobrevida
2.
Nature ; 609(7925): 101-108, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798029

RESUMO

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Análise de Sequência de RNA , Águas Residuárias/virologia
3.
Am J Pathol ; 194(3): 353-368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158078

RESUMO

Nonalcoholic steatohepatitis (NASH) is an inflammatory and fibrotic liver disease that has reached epidemic proportions and has no approved pharmacologic therapies. Research and drug development efforts are hampered by inadequate preclinical models. This research describes a three-dimensional bioprinted liver tissue model of NASH built using primary human hepatocytes and nonparenchymal liver cells (hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) from either healthy or NASH donors. Three-dimensional tissues bioprinted with cells sourced from diseased patients showed a NASH phenotype, including fibrosis. More importantly, this NASH phenotype occurred without the addition of disease-inducing agents. Bioprinted tissues composed entirely of healthy cells exhibited significantly less evidence of disease. The role of individual cell types in driving the NASH phenotype was examined by producing chimeric bioprinted tissues composed of healthy cells together with the addition of one or more diseased nonparenchymal cell types. These experiments reveal a role for both hepatic stellate and liver sinusoidal endothelial cells in the disease process. This model represents a fully human system with potential to detect clinically active targets and eventually therapies.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Endoteliais/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/patologia
4.
Brain ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489591

RESUMO

Leukodystrophies are rare genetic white matter disorders that have been regarded as mainly occurring in childhood. Recent years altered this perception, as a growing number of leukodystrophies was described to have an onset at adult ages. Still, many adult patients presenting with white matter changes remain without a specific molecular diagnosis. We describe a novel adult onset leukodystrophy in 16 patients from eight families carrying one of four different stop-gain or frameshift dominant variants in the CST3 gene. Clinical and radiological features differ markedly from the previously described Icelandic Cerebral Amyloid Angiopathy that was found in patients carrying p.Leu68Asn substitution in CST3. The clinical phenotype consists of recurrent episodes of hemiplegic migraine associated with transient unilateral focal deficits and slowly progressing motor symptoms and cognitive decline in mid-old adult ages. In addition, in some cases acute onset clinical deterioration led to a prolonged episode with reduced consciousness and even early death. Radiologically, pathognomonic changes are found at typical predilection sites involving the deep cerebral white matter sparing a periventricular and directly subcortical rim, the middle blade of corpus callosum, posterior limb of the internal capsule, middle cerebellar peduncles, cerebral peduncles, and specifically the globus pallidus. Histopathologic characterization in two autopsy cases did not reveal angiopathy, but instead micro- to macrocystic degeneration of the white matter. Astrocytes were activated at early stages and later on displayed severe degeneration and loss. In addition, despite loss of myelin, elevated numbers of partly apoptotic oligodendrocytes were observed. A structural comparison of the variants in CST3 suggests that specific truncations of Cystatin C result in an abnormal function, possibly by rendering the protein more prone to aggregation. Future studies are required to confirm the assumed effect on the protein and to determine pathophysiologic downstream events at the cellular level.

5.
Nat Immunol ; 13(11): 1072-82, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22983360

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are regulated by various bone marrow stromal cell types. Here we identified rare activated bone marrow monocytes and macrophages with high expression of α-smooth muscle actin (α-SMA) and the cyclooxygenase COX-2 that were adjacent to primitive HSPCs. These myeloid cells resisted radiation-induced cell death and further upregulated COX-2 expression under stress conditions. COX-2-derived prostaglandin E(2) (PGE(2)) prevented HSPC exhaustion by limiting the production of reactive oxygen species (ROS) via inhibition of the kinase Akt and higher stromal-cell expression of the chemokine CXCL12, which is essential for stem-cell quiescence. Our study identifies a previously unknown subset of α-SMA(+) activated monocytes and macrophages that maintain HSPCs and protect them from exhaustion during alarm situations.


Assuntos
Actinas/imunologia , Medula Óssea/imunologia , Células-Tronco Hematopoéticas/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Actinas/genética , Animais , Medula Óssea/metabolismo , Medula Óssea/efeitos da radiação , Comunicação Celular/genética , Comunicação Celular/imunologia , Movimento Celular/genética , Movimento Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Sobrevivência Celular/efeitos da radiação , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Dinoprostona/biossíntese , Dinoprostona/imunologia , Raios gama , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos da radiação , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos da radiação , Macrófagos/citologia , Macrófagos/efeitos da radiação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/efeitos da radiação , Camundongos , Monócitos/citologia , Monócitos/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transdução de Sinais/efeitos da radiação
6.
Hepatology ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37934631

RESUMO

The Food and Drug Administration (FDA) Modernization Act 2.0 "allows for alternatives to animal testing for purposes of drug and biological product applications." This provides an opportunity to develop and improve alternatives to animal studies to assess drugs in the liver. Two-dimensional cultures of liver cells fail to maintain their differentiated state and fail to reproduce liver disease phenotypes. Therefore, several platforms using human liver cells are being developed either to (1) assess hepatotoxicity of drugs or (2) create "diseases in a dish" to assess the effectiveness of drugs in treating liver diseases, primarily focused on treating MASH. The technological approaches include precision cut liver slices, human liver spheroids, human liver organoids, bioprinted human liver tissues, and microphysiological systems. This review evaluates each of these technologies and their role in providing alternatives to testing in animals.

8.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34253615

RESUMO

We investigated the role of mesothelin (Msln) and thymocyte differentiation antigen 1 (Thy1) in the activation of fibroblasts across multiple organs and demonstrated that Msln-/- mice are protected from cholestatic fibrosis caused by Mdr2 (multidrug resistance gene 2) deficiency, bleomycin-induced lung fibrosis, and UUO (unilateral urinary obstruction)-induced kidney fibrosis. On the contrary, Thy1-/- mice are more susceptible to fibrosis, suggesting that a Msln-Thy1 signaling complex is critical for tissue fibroblast activation. A similar mechanism was observed in human activated portal fibroblasts (aPFs). Targeting of human MSLN+ aPFs with two anti-MSLN immunotoxins killed fibroblasts engineered to express human mesothelin and reduced collagen deposition in livers of bile duct ligation (BDL)-injured mice. We provide evidence that antimesothelin-based therapy may be a strategy for treatment of parenchymal organ fibrosis.


Assuntos
Colestase/tratamento farmacológico , Fibroblastos/imunologia , Imunoterapia , Cirrose Hepática/tratamento farmacológico , Animais , Colestase/genética , Colestase/imunologia , Colágeno/imunologia , Fibroblastos/efeitos dos fármacos , Humanos , Imunotoxinas/administração & dosagem , Cirrose Hepática/genética , Cirrose Hepática/imunologia , Mesotelina/genética , Mesotelina/imunologia , Camundongos , Antígenos Thy-1/genética , Antígenos Thy-1/imunologia
9.
BMC Genomics ; 24(1): 139, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944971

RESUMO

BACKGROUND: Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS: The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFß and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS: Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.


Assuntos
Transcriptoma , Irradiação Corporal Total , Animais , Macaca mulatta , Proteoma , Proteômica , Multiômica , Células Sanguíneas , Doses de Radiação
10.
Neurogenetics ; 24(3): 209-213, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37341843

RESUMO

Primary familial brain calcification (PFBC; formerly Fahr's disease) and early-onset Alzheimer's disease (EOAD) may share partially overlapping pathogenic principles. Although the heterozygous loss-of-function mutation c.1523 + 1G > T in the PFBC-linked gene SLC20A2 was detected in a patient with asymmetric tremor, early-onset dementia, and brain calcifications, CSF ß-amyloid parameters and FBB-PET suggested cortical ß-amyloid pathology. Genetic re-analysis of exome sequences revealed the probably pathogenic missense mutation c.235G > A/p.A79T in PSEN1. The SLC20A2 mutation segregated with mild calcifications in two children younger than 30 years. We thus describe the stochastically extremely unlikely co-morbidity of genetic PFBC and genetic EOAD. The clinical syndromes pointed to additive rather than synergistic effects of the two mutations. MRI data revealed the formation of PFBC calcifications decades before the probable onset of the disease. Our report furthermore exemplifies the value of neuropsychology and amyloid PET for differential diagnosis.


Assuntos
Doença de Alzheimer , Doenças dos Gânglios da Base , Encefalopatias , Criança , Humanos , Doença de Alzheimer/genética , Mutação , Doenças dos Gânglios da Base/patologia , Encéfalo/patologia , Morbidade , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Encefalopatias/patologia , Presenilina-1/genética
11.
Cytogenet Genome Res ; 163(3-4): 110-120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37573770

RESUMO

Following a mass-casualty nuclear/radiological event, there will be an important need for rapid and accurate estimation of absorbed dose for biological triage. The cytokinesis-block micronucleus (CBMN) assay is an established and validated cytogenetic biomarker used to assess DNA damage in irradiated peripheral blood lymphocytes. Here, we describe an intercomparison experiment between two biodosimetry laboratories, located at Columbia University (CU) and Health Canada (HC) that performed different variants of the human blood CBMN assay to reconstruct dose in human blood, with CU performing the assay on isolated lymphocytes and using semi-automated scoring whereas HC used the more conventional whole blood assay. Although the micronucleus yields varied significantly between the two assays, the predicted doses closely matched up to 4 Gy - the range from which the HC calibration curve was previously established. These results highlight the importance of a robust calibration curve(s) across a wide age range of donors that match the exposure scenario as closely as possible and that will account for differences in methodology between laboratories. We have seen that at low doses, variability in the results may be attributed to variation in the processing while at higher doses the variation is dominated by inter-individual variation in cell proliferation. This interlaboratory collaboration further highlights the usefulness of the CBMN endpoint to accurately reconstruct absorbed dose in human blood after ionizing radiation exposure.


Assuntos
Citocinese , Radiometria , Humanos , Radiometria/métodos , Triagem/métodos , Linfócitos , Testes para Micronúcleos/métodos
12.
Cytogenet Genome Res ; 163(3-4): 121-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37793357

RESUMO

The cytokinesis-block micronucleus (CBMN) assay is an established method for assessing chromosome damage in human peripheral blood lymphocytes resulting from exposure to genotoxic agents such as ionizing radiation. The objective of this study was to measure cytogenetic DNA damage and hematology parameters in vivo based on MN frequency in peripheral blood lymphocytes (PBLs) from adult and pediatric leukemia patients undergoing hematopoietic stem cell transplantation preceded by total body irradiation (TBI) as part of the conditioning regimen. CBMN assay cultures were prepared from fresh blood samples collected before and at 4 and 24 h after the start of TBI, corresponding to doses of 1.25 Gy and 3.75 Gy, respectively. For both age groups, there was a significant increase in MN yields with increasing dose (p < 0.05) and dose-dependent decrease in the nuclear division index (NDI; p < 0.0001). In the pre-radiotherapy samples, there was a significantly higher NDI measured in the pediatric cohort compared to the adult due to an increase in the percentage of tri- and quadri-nucleated cells scored. Complete blood counts with differential recorded before and after TBI at the 24-h time point showed a rapid increase in neutrophil (p = 0.0001) and decrease in lymphocyte (p = 0.0006) counts, resulting in a highly elevated neutrophil-to-lymphocyte ratio (NLR) of 14.45 ± 1.85 after 3.75 Gy TBI (pre-exposure = 4.62 ± 0.49), indicating a strong systemic inflammatory response. Correlation of the hematological cell subset counts with cytogenetic damage, indicated that only the lymphocyte subset survival fraction (after TBI compared with before TBI) showed a negative correlation with increasing MN frequency from 0 to 1.25 Gy (r = -0.931; p = 0.007). Further, the data presented here indicate that the combination of CBMN assay endpoints (MN frequency and NDI values) and hematology parameters could be used to assess cytogenetic damage and early hematopoietic injury in the peripheral blood of leukemia patients, 24 h after TBI exposure.


Assuntos
Leucemia , Irradiação Corporal Total , Adulto , Humanos , Criança , Irradiação Corporal Total/efeitos adversos , Testes para Micronúcleos/métodos , Citocinese/genética , Citocinese/efeitos da radiação , Linfócitos
13.
Cytogenet Genome Res ; 163(3-4): 131-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37527635

RESUMO

The cytokinesis-block micronucleus assay is a well-established method to assess radiation-induced genetic damage in human cells. This assay has been adapted to imaging flow cytometry (IFC), allowing automated analysis of many cells, and eliminating the need to create microscope slides. Furthermore, to improve the efficiency of assay performance, a small-volume method previously developed was employed. Irradiated human blood samples were cultured, stained, and analyzed by IFC to produce images of the cells. Samples were run using both manual and 96-well plate automated acquisition. Multiple parameter-based image features were collected for each sample, and the results were compared to confirm that these acquisition methods are functionally identical. This paper details the multi-parametric analysis developed and the resulting calibration curves up to 10 Gy. The calibration curves were created using a quadratic random coefficient model with Poisson errors, as well as a logistic discriminant function. The curves were then validated with blinded, irradiated samples, using relative bias and relative mean square error. Overall, the accuracy of the dose estimates was adequate for triage dosimetry (within 1 Gy of the true dose) over 90% of the time for lower doses and about half the time for higher doses, with the lowest success rate between 5 and 6 Gy where the calibration curve reached its peak and there was the smallest change in MN/BNC with dose. This work describes the application of a novel multi-parametric analysis that fits the calibration curves and allows dose estimates up to 10 Gy, which were previously limited to 4 Gy. Furthermore, it demonstrates that the results from samples acquired manually and with the autosampler are functionally similar.


Assuntos
Citocinese , Radiometria , Humanos , Citocinese/genética , Testes para Micronúcleos/métodos , Citometria de Fluxo/métodos , Radiometria/métodos
14.
Cytometry A ; 103(7): 575-583, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36823754

RESUMO

Peripheral blood mononuclear cells (PBMCs) are a useful model for biochemical assays, particularly for etiological studies. We describe here a method for measuring DNA repair capacity (DRC) in archival cryogenically preserved PBMCs. To model DRC, we measured γ-H2AX repair kinetics in thawed PBMCs after irradiation with 3 Gy gamma rays. Time-dependent fluorescently labeled γ-H2AX levels were measured at five time points from 1 to 20 h, yielding an estimate of global DRC repair kinetics as well as a measure of unrepaired double strand breaks at 20 h. While γ-H2AX levels are traditionally measured by either microscopy or flow-cytometry, we developed a protocol for imaging flow cytometry (IFC) that combines the detailed information of microscopy with the statistical power of flow methods. The visual imaging component of the IFC allows for monitoring aspects such as cellular health and apoptosis as well as fluorescence localization of the γ-H2AX signal, which ensures the power and significance of this technique. Application of a machine-learning based image classification improved flow cytometry fluorescent measurements by identifying apoptotic cells unable to undergo DNA repair. We present here DRC repair parameters from 18 frozen archival PBMCs and 28 fresh blood samples collected from a demographically diverse cohort of women measured in a high-throughput IFC format. This thaw method and assay can be used alone or in conjunction with other assays to measure etiological phenotypes in cryogenic biobanks of PBMCs.


Assuntos
Histonas , Leucócitos Mononucleares , Feminino , Animais , Leucócitos Mononucleares/metabolismo , Histonas/genética , Histonas/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Criopreservação
15.
Semin Liver Dis ; 42(3): 233-249, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36001995

RESUMO

Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações
16.
Neurogenetics ; 23(1): 59-65, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34518945

RESUMO

Mutations in FUS and TBK1 often cause aggressive early-onset amyotrophic lateral sclerosis (ALS) or a late-onset ALS and/or frontotemporal dementia (FTD) phenotype, respectively. Co-occurrence of mutations in two or more Mendelian ALS/FTD genes has been repeatedly reported. However, little is known how two pathogenic ALS/FTD mutations in the same patient interact to shape the final phenotype. We screened 28 ALS patients with a known FUS mutation by whole-exome sequencing and targeted evaluation for mutations in other known ALS genes followed by genotype-phenotype correlation analysis of FUS/TBK1 double-mutant patients. We report on new and summarize previously published FUS and TBK1 double-mutant ALS/FTD patients and their families. We found that, within a family, mutations in FUS cause ALS while TBK1 single mutations are observed in FTD patients. FUS/TBK1 double mutations manifested as ALS and without a manifest difference regarding age at onset and disease duration when compared to FUS single-mutant individuals. In conclusion, TBK1 and FUS variants do not seem to interact in a simple additive way. Rather, the phenotype of FUS/TBK1 double-mutant patients appears to be dominated by the FUS mutation.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Humanos , Mutação , Linhagem , Proteínas Serina-Treonina Quinases/genética , Proteína FUS de Ligação a RNA/genética
17.
Curr Opin Neurol ; 35(5): 672-677, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35942673

RESUMO

PURPOSE OF REVIEW: ALS genetics are highly dynamic and of great interest for the ALS research community. Each year, by using ever-growing datasets and cutting-edge methodology, an array of novel ALS-associated genes and downstream pathomechanisms are discovered. The increasing plenty and complexity of insights warrants regular summary by-reviews. RECENT FINDINGS: Most recent disease gene discoveries constitute the candidate and risk genes SPTLC1 , KANK1 , CAV1 , HTT , and WDR7 , as well as seven novel risk loci. Cell type and functional enrichment analyses enlighten the genetic basis of selective motor neuron vulnerability in ALS demonstrating high expression of ALS-associated genes in cortical motor neurons and highlight the pathogenic significance of cell-autonomous processes. Major pathomechanistic insights have been gained regarding known ALS genes/proteins, specifically C9orf72 , TDP43, ANXA11 , and KIF5A . The first ASO-based gene-specific therapy trials in familial forms of ALS have yielded equivocal results stressing the re-evaluation of pathomechanisms linked to SOD1 and C9orf72 mutations. SUMMARY: The genetic and molecular basis of ALS is increasingly examined on single-cell resolution. In the past 2 years, the understanding of the downstream mechanisms of several ALS genes and TDP-43 proteinopathy has been considerably extended. These insights will result in novel gene specific therapy approaches for sporadic ALS and genetic subtypes.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , Proteína C9orf72/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Humanos , Cinesinas , Neurônios Motores/patologia , Mutação/genética
18.
Am J Pathol ; 191(9): 1564-1579, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34119473

RESUMO

Although hepatocellular cancer (HCC) usually occurs in the setting of liver fibrosis, the causal relationship between liver fibrosis and HCC is unclear. in vivo and in vitro models of HCC involving Colr/r mice (that produce a collagenase-resistant type I collagen) or wild-type (WT) mice were used to assess the relationship between type I collagen, liver fibrosis, and experimental HCC. HCC was either chemically induced in WT and Colr/r mice or Hepa 1-6 cells were engrafted into WT and Colr/r livers. The effect of hepatic stellate cells (HSCs) from WT and Colr/r mice on the growth of Hepa 1-6 cells was studied by using multicellular tumor spheroids and xenografts. Collagen type I deposition and fibrosis were increased in Colr/r mice, but they developed fewer and smaller tumors. Hepa 1-6 cells had reduced tumor growth in the livers of Colr/r mice. Although Colr/r HSCs exhibited a more activated phenotype, Hepa 1-6 growth and malignancy were suppressed in multicellular tumor spheroids and in xenografts containing Colr/r HSCs. Treatment with vitronectin, which mimics the presence of degraded collagen fragments, converted the Colr/r phenotype into a WT phenotype. Although Colr/r mice have increased liver fibrosis, they exhibited decreased HCC in several models. Thus, increased liver type I collagen does not produce increased experimental HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Colágeno Tipo I/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas Experimentais/patologia , Animais , Linhagem Celular Tumoral , Células Estreladas do Fígado/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL
19.
Hepatology ; 74(2): 667-685, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33550587

RESUMO

BACKGROUND AND AIMS: In clinical and experimental NASH, the origin of the scar-forming myofibroblast is the HSC. We used foz/foz mice on a Western diet to characterize in detail the phenotypic changes of HSCs in a NASH model. APPROACH AND RESULTS: We examined the single-cell expression profiles (scRNA sequencing) of HSCs purified from the normal livers of foz/foz mice on a chow diet, in NASH with fibrosis of foz/foz mice on a Western diet, and in livers during regression of NASH after switching back to a chow diet. Selected genes were analyzed using immunohistochemistry, quantitative real-time PCR, and short hairpin RNA knockdown in primary mouse HSCs. Our analysis of the normal liver identified two distinct clusters of quiescent HSCs that correspond to their acinar position of either pericentral vein or periportal vein. The NASH livers had four distinct HSC clusters, including one representing the classic fibrogenic myofibroblast. The three other HSC clusters consisted of a proliferating cluster, an intermediate activated cluster, and an immune and inflammatory cluster. The livers with NASH regression had one cluster of inactivated HSCs, which was similar to, but distinct from, the quiescent HSCs. CONCLUSIONS: Analysis of single-cell RNA sequencing in combination with an interrogation of previous studies revealed an unanticipated heterogeneity of HSC phenotypes under normal and injured states.


Assuntos
Redes Reguladoras de Genes , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Miofibroblastos/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Heterogeneidade Genética , Células Estreladas do Fígado/patologia , Humanos , Fígado/citologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Hepatopatia Gordurosa não Alcoólica/etiologia , Cultura Primária de Células , RNA-Seq , Análise de Célula Única
20.
Proc Natl Acad Sci U S A ; 116(30): 15184-15193, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31289229

RESUMO

Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates glucose, lipid, and energy homeostasis. While gene expression of FGF21 is regulated by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha in the fasted state, little is known about the regulation of trafficking and secretion of FGF21. We show that mice with a mutation in the Yip1 domain family, member 6 gene (Klein-Zschocher [KLZ]; Yipf6KLZ/Y ) on a high-fat diet (HFD) have higher plasma levels of FGF21 than mice that do not carry this mutation (controls) and hepatocytes from Yipf6KLZ/Y mice secrete more FGF21 than hepatocytes from wild-type mice. Consequently, Yipf6KLZ/Y mice are resistant to HFD-induced features of the metabolic syndrome and have increased lipolysis, energy expenditure, and thermogenesis, with an increase in core body temperature. Yipf6KLZ/Y mice with hepatocyte-specific deletion of FGF21 were no longer protected from diet-induced obesity. We show that YIPF6 binds FGF21 in the endoplasmic reticulum to limit its secretion and specifies packaging of FGF21 into coat protein complex II (COPII) vesicles during development of obesity in mice. Levels of YIPF6 protein in human liver correlate with hepatic steatosis and correlate inversely with levels of FGF21 in serum from patients with nonalcoholic fatty liver disease (NAFLD). YIPF6 is therefore a newly identified regulator of FGF21 secretion during development of obesity and could be a target for treatment of obesity and NAFLD.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Fígado/metabolismo , Proteínas de Membrana/genética , Síndrome Metabólica/genética , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Animais , Temperatura Corporal , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Dieta Hiperlipídica/efeitos adversos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Metabolismo Energético/genética , Fatores de Crescimento de Fibroblastos/sangue , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lipólise/genética , Fígado/patologia , Proteínas de Membrana/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Ligação Proteica , Transdução de Sinais , Termogênese/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa