Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosurg ; 141(1): 268-277, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181494

RESUMO

OBJECTIVE: The objectives of this study were to describe the authors' clinical methodology and outcomes for mapping the laryngeal motor cortex (LMC) and define localization of the LMC in a cohort of neurosurgical patients undergoing intraoperative brain mapping. Because of mapping variability across patients, the authors aimed to define the probabilistic distribution of cortical sites that evoke laryngeal movement, as well as adjacent cortical somatotopic representations for the face (mouth), tongue, and hand. METHODS: Thirty-six patients underwent left (n = 18) or right (n = 18) craniotomy with asleep motor mapping. For each patient, electromyography (EMG) electrodes were placed in the face, tongue, and hand; a nerve integrity monitor (NIM) endotracheal tube with surface electrodes detected EMG activity from the bilateral vocal folds. After dense cortical stimulation was delivered throughout the sensorimotor cortex, motor responses were then mapped onto a three-dimensional reconstruction of the patient's cortical surfaces for location characterization of the evoked responses. Finally, stimulation sites were transformed into a two-dimensional coordinate system for probabilistic mapping of the stimulation site relative to the central sulcus and sylvian fissure. RESULTS: The authors found that the LMC was predominantly localized to a mid precentral gyrus region, dorsal to face representation and surrounding a transverse sulcus ventral to the hand knob. In 14 of 36 patients, the authors identified additional laryngeal responses located ventral to all orofacial representations, providing evidence for dual LMC representations. CONCLUSIONS: The authors determined the probabilistic distribution of the LMC. Cortical stimulation mapping with an NIM endotracheal tube is an easy and effective method for mapping the LMC and is simply integrated into the current neuromonitoring methods for brain mapping.


Assuntos
Mapeamento Encefálico , Eletromiografia , Córtex Motor , Humanos , Córtex Motor/fisiologia , Eletromiografia/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Mapeamento Encefálico/métodos , Adulto , Idoso , Estimulação Elétrica/métodos , Laringe , Adulto Jovem , Craniotomia/métodos , Monitorização Neurofisiológica Intraoperatória/métodos
2.
Nat Commun ; 15(1): 476, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216587

RESUMO

Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.


Assuntos
Neurilemoma , Humanos , Neurilemoma/genética , Neurilemoma/patologia , Epigênese Genética , Reprogramação Celular/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa