Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Addict Neurosci ; 112024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957401

RESUMO

Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (µORs). The µOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from µOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9, a gene encoding a carbohydrate sulfotransferase. Notably, Chst9+ neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9. The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.

2.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948801

RESUMO

Drugs of abuse activate defined neuronal ensembles in brain reward structures such as the nucleus accumbens (NAc), which are thought to promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, the mechanisms that sculpt NAc ensemble participation are largely unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling to identify expression of the secreted glycoprotein Reelin (encoded by the Reln gene) as a marker of cocaine-activated neuronal ensembles within the rat NAc. Multiplexed in situ detection confirmed selective expression of the immediate early gene Fos in Reln+ neurons after cocaine experience, and also revealed enrichment of Reln mRNA in Drd1 + medium spiny neurons (MSNs) in both the rat and human brain. Using a novel CRISPR interference strategy enabling selective Reln knockdown in the adult NAc, we observed altered expression of genes linked to calcium signaling, emergence of a transcriptional trajectory consistent with loss of cocaine sensitivity, and a striking decrease in MSN intrinsic excitability. At the behavioral level, loss of Reln prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. Together, these results identify Reelin as a critical mechanistic link between ensemble participation and cocaine-induced behavioral adaptations.

3.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37904940

RESUMO

Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (µORs). The µOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies in rodent, primate, and human NAc have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from µOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9 , a gene encoding a carbohydrate sulfotransferase. To validate this observation and characterize spatial localization of this population in the rat NAc, we performed multiplexed RNAscope fluorescence in situ hybridization studies to detect expression of Oprm1 and Chst9 mRNA along with well-validated markers of MSNs. Notably, Chst9 + neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9 . The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.

4.
Nat Commun ; 10(1): 3415, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363095

RESUMO

Conventional methods to discern adeno-associated virus (AAV) vector transduction patterns are based on high, stable expression of a reporter gene. As a consequence, conventionally described tropisms omit cell types that undergo transient transduction, or have low but undetectable levels of reporter expression. This creates a blind spot for AAV-based genome editing applications because only minimal transgene expression is required for activity. Here, we use editing-reporter mice to fill this void. Our approach sensitively captures both high and low transgene expression from AAV vectors. Using AAV8 and other serotypes, we demonstrate the superiority of the approach in a side-by-side comparison with traditional methods, demonstrate numerous, previously unknown sites of AAV targeting, and better predict the gene editing footprint after AAV-CRISPR delivery. We anticipate that this system, which captures the full spectrum of transduction patterns from AAV vectors in vivo, will be foundational to current and emerging AAV technologies.


Assuntos
Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos/genética , Transdução Genética , Animais , Sistemas CRISPR-Cas , Genes Reporter , Rim/virologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa