Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 297: 120709, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936650

RESUMO

INTRODUCTION: The extended practice of meditation may reduce the influence of state fatigue by changing neurocognitive processing. However, little is known about the preventive effects of one-session brief focused attention meditation (FAM) on state fatigue in healthy participants or its potential neural mechanisms. This study examined the preventive effects of one-session brief FAM on state fatigue and its neural correlates using resting-state functional MRI (rsfMRI) measurements. METHODS: We randomly divided 56 meditation-naïve participants into FAM and control groups. After the first rsfMRI scan, each group performed a 10-minute each condition while wearing a functional near-infrared spectroscopy (fNIRS) device for assessing brain activity. Subsequently, following a second rsfMRI scan, the participants completed a fatigue-inducing task (a Go/NoGo task) for 60 min. We evaluated the temporal changes in the Go/NoGo task performance of participants as an indicator of state fatigue. We then calculated changes in the resting-state functional connectivity (rsFC) of the rsfMRI from before to after each condition and compared them between groups. We also evaluated neural correlates between the changes in rsFC and state fatigue. RESULTS AND DISCUSSION: The fNIRS measurements indicated differences in brain activity during each condition between the FAM and control groups, showing decreased medial prefrontal cortex activity and decreased functional connectivity between the medial prefrontal cortex and middle frontal gyrus. The control group exhibited a decrement in Go/NoGo task performance over time, whereas the FAM group did not. These results, thus, suggested that FAM could prevent state fatigue. Compared with the control group, the rsFC analysis revealed a significant increase in the connectivity between the left dorsomedial prefrontal cortex and right superior parietal lobule in the FAM group, suggesting a modification of attention regulation by cognitive effort. In the control group, increased connectivity was observed between the bilateral posterior cingulate cortex and left inferior occipital gyrus, which might be associated with poor attention regulation and reduced higher-order cognitive function. Additionally, the change in the rsFC of the control group was related to state fatigue. CONCLUSION: Our findings suggested that one session of 10-minute FAM could prevent behavioral state fatigue by employing cognitive effort to modify attention regulation as well as suppressing poor attention regulation and reduced higher-order cognitive function.

2.
Sci Rep ; 12(1): 7856, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550564

RESUMO

Although loneliness itself is a natural emotion, prolonged loneliness is detrimental to human health. Despite its detrimental effect, few loneliness-related neuroimaging studies have been published and some have limitations on the sample size number. This study aims to find the difference in resting-state functional connectivity associated with loneliness within a big sample size via the seed-based approach. Functional connectivity analysis was performed on a large cohort of young adults (N = 1336) using the seed-based functional connectivity approach to address the concern from previous studies. The analysis yielded statistically significant positive correlations between loneliness and functional connectivities between the inferior frontal gyrus and supplementary motor area, precentral gyrus, and superior parietal lobule. Additionally, the analysis replicated a finding from a previous study, which is increased functional connectivities between the inferior frontal gyrus and supplementary motor area. In conclusion, greater loneliness is reflected by stronger functional connectivity of the visual attention brain area.


Assuntos
Solidão , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal , Adulto Jovem
3.
Brain Sci ; 9(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557907

RESUMO

Video gaming, the experience of playing electronic games, has shown several benefits for human health. Recently, numerous video gaming studies showed beneficial effects on cognition and the brain. A systematic review of video gaming has been published. However, the previous systematic review has several differences to this systematic review. This systematic review evaluates the beneficial effects of video gaming on neuroplasticity specifically on intervention studies. Literature research was conducted from randomized controlled trials in PubMed and Google Scholar published after 2000. A systematic review was written instead of a meta-analytic review because of variations among participants, video games, and outcomes. Nine scientific articles were eligible for the review. Overall, the eligible articles showed fair quality according to Delphi Criteria. Video gaming affects the brain structure and function depending on how the game is played. The game genres examined were 3D adventure, first-person shooting (FPS), puzzle, rhythm dance, and strategy. The total training durations were 16-90 h. Results of this systematic review demonstrated that video gaming can be beneficial to the brain. However, the beneficial effects vary among video game types.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa