Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 142: 495-510, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277386

RESUMO

Access to detailed comparisons in air quality variations encountered when commuting through a city offers the urban traveller more informed choice on how to minimise personal exposure to inhalable pollutants. In this study we report on an experiment designed to compare atmospheric contaminants inhaled during bus, subway train, tram and walking journeys through the city of Barcelona. Average number concentrations of particles 10-300 nm in size, N, are lowest in the commute using subway trains (N<2.5×10(4) part. cm(-3)), higher during tram travel and suburban walking (2.5×10(4) cm(-3)5.0×10(4) cm(-3)), with extreme transient peaks at busy traffic crossings commonly exceeding 1.0×10(5) cm(-3) and accompanied by peaks in Black Carbon and CO. Subway particles are coarser (mode 90 nm) than in buses, trams or outdoors (<70 nm), and concentrations of fine particulate matter (PM2.5) and Black Carbon are lower in the tram when compared to both bus and subway. CO2 levels in public transport reflect passenger numbers, more than tripling from outdoor levels to >1200 ppm in crowded buses and trains. There are also striking differences in inhalable particle chemistry depending on the route chosen, ranging from aluminosiliceous at roadsides and near pavement works, ferruginous with enhanced Mn, Co, Zn, Sr and Ba in the subway environment, and higher levels of Sb and Cu inside the bus. We graphically display such chemical variations using a ternary diagram to emphasise how "air quality" in the city involves a consideration of both physical and chemical parameters, and is not simply a question of measuring particle number or mass.


Assuntos
Poluentes Atmosféricos/análise , Ar , Exposição por Inalação/análise , Material Particulado/análise , Meios de Transporte , Emissões de Veículos/análise , Ar/análise , Ar/normas , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Espanha , Meios de Transporte/normas , Urbanização , Caminhada
2.
Environ Sci Pollut Res Int ; 26(31): 32114-32127, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31494852

RESUMO

Source apportionment of atmospheric PM1 is important for air quality control, especially in urban areas where high mass concentrations are often observed. Chemical analysis of molecular inorganic and organic tracer compounds and subsequently data analysis with receptor models give insight on the origin of the PM1 sources. In the present study, four source apportionment approaches were compared with an extended database containing inorganic and organic compounds that were measured during an intensive sampling campaign at urban traffic and urban background sites in Barcelona. Source apportionment of the combined database, containing both inorganic and organic compounds, was compared with more conventional approaches using inorganic and organic databases separately. Traffic emission sources were identified in all models for the two sites. The combined inorganic and organic databases provided higher discrimination capacity of emission sources. It identified aerosols generated by regional recirculation of biomass burning, secondary biogenic organic aerosols, harbor emissions, and specific industrial emissions. In this respect, this approach identified a relevant industrial source situated at NE Barcelona in which a waste incinerator plant, a combined-cycle power plant, and an industrial glass complex are located. Models using both inorganic and organic molecular tracer compounds improve the source apportionment of urban PM.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Compostos Orgânicos/análise , Biomassa , Indústrias , Centrais Elétricas , Estações do Ano
3.
Sci Total Environ ; 517: 38-47, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710624

RESUMO

Ultrafine particles are characterized by a high surface area per mass. Particle surface has been reported to play a significant role in determining the toxicological activity of ultrafine particles. In light of this potential role, the time variation of lung deposited surface area (LDSA) concentrations in the alveolar region was studied at the urban background environment of Barcelona (Spain), aiming to asses which processes and sources govern this parameter. Simultaneous data on Black Carbon (BC), total particle number (N) and particle number size distribution were correlated with LDSA. Average LDSA concentrations in Barcelona were 37 ± 26 µm(2)cm(-3), levels which seem to be characteristic for urban environments under traffic influence across Europe. Results confirm the comparability between LDSA data provided by the online monitor and those calculated based on particle size distributions (by SMPS), and reveal that LDSA concentrations are mainly influenced by particles in the size range 50-200 nm. A set of representative daily cycles for LDSA concentrations was obtained by means of a k-means cluster technique. The contribution of traffic emissions to daily patterns was evidenced in all the clusters, but was quantitatively different. Traffic events under stable atmospheric conditions increased mean hourly background LDSA concentrations up to 6 times, attaining levels higher than 200 µm(2)cm(-3). However, under warm and relatively clean atmospheric conditions, the traffic rush hour contribution to the daily LDSA mean appeared to be lower and the contribution of new urban particle formation events (by photochemically induced nucleation) was detected. These nucleation events were calculated to increase average background LDSA concentrations by 15-35% (maximum LDSA levels=45-50 µm(2)cm(-3)). Thereby, it may be concluded that in the urban background of Barcelona road traffic is the main source increasing the aerosol surface area which can deposit on critical regions of the human lung, followed by nucleation episodes.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Exposição por Inalação/estatística & dados numéricos , Cidades/estatística & dados numéricos , Humanos , Espanha , População Urbana/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa