Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(2): 100721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246483

RESUMO

Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo
2.
J Neurochem ; 168(7): 1254-1264, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362804

RESUMO

Brain amyloid-ß (Aß) deposits are key pathological hallmarks of both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Microvascular deposits in CAA mainly consist of the Aß40 peptide, whereas Aß42 is the predominant variant in parenchymal plaques in AD. The relevance in pathogenesis and diagnostic accuracy of various other Aß isoforms in CAA remain understudied. We aimed to investigate the biomarker potential of various Aß isoforms in cerebrospinal fluid (CSF) to differentiate CAA from AD pathology. We included 25 patients with probable CAA, 50 subjects with a CSF profile indicative of AD pathology (AD-like), and 23 age- and sex-matched controls. CSF levels of Aß1-34, Aß1-37, Aß1-38, Aß1-39, Aß1-40, and Aß1-42 were quantified by liquid chromatography mass spectrometry. Lower CSF levels of all six Aß peptides were observed in CAA patients compared with controls (p = 0.0005-0.03). Except for Aß1-42 (p = 1.0), all peptides were decreased in CAA compared with AD-like subjects (p = 0.007-0.03). Besides Aß1-42, none of the Aß peptides were decreased in AD-like subjects compared with controls. All Aß peptides combined differentiated CAA from AD-like subjects better (area under the curve [AUC] 0.84) than individual peptide levels (AUC 0.51-0.75). Without Aß1-42 in the model (since decreased Aß1-42 served as AD-like selection criterion), the AUC was 0.78 for distinguishing CAA from AD-like subjects. CAA patients and AD-like subjects showed distinct disease-specific CSF Aß profiles. Peptides shorter than Aß1-42 were decreased in CAA patients, but not AD-like subjects, which could suggest different pathological mechanisms between vascular and parenchymal Aß accumulation. This study supports the potential use of this panel of CSF Aß peptides to indicate presence of CAA pathology with high accuracy.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Angiopatia Amiloide Cerebral , Humanos , Angiopatia Amiloide Cerebral/líquido cefalorraquidiano , Angiopatia Amiloide Cerebral/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Feminino , Masculino , Idoso , Biomarcadores/líquido cefalorraquidiano , Pessoa de Meia-Idade , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Idoso de 80 Anos ou mais
3.
Ann Neurol ; 93(6): 1173-1186, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36707720

RESUMO

OBJECTIVE: Vascular amyloid ß (Aß) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aß38, Aß40, Aß42, and Aß43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). METHODS: Aß peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). RESULTS: We found decreased levels of all Aß peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aß42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aß43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aß peptides except Aß43 were also decreased in sCAA compared to AD (CSF Aß38: AUC = 0.82, 95% CI = 0.71-0.93; CSF Aß40: AUC = 0.88, 95% CI = 0.80-0.96; CSF Aß42: AUC = 0.79, 95% CI = 0.66-0.92). INTERPRETATION: A combined biomarker panel of CSF Aß38, Aß40, Aß42, and Aß43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023;93:1173-1186.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral Familiar , Angiopatia Amiloide Cerebral , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano
4.
Acta Neuropathol ; 147(1): 12, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184490

RESUMO

Post-mortem staging of Alzheimer's disease (AD) neurofibrillary pathology is commonly performed by immunohistochemistry using AT8 antibody for phosphorylated tau (p-tau) at positions 202/205. Thus, quantification of p-tau205 and p-tau202 in cerebrospinal fluid (CSF) should be more reflective of neurofibrillary tangles in AD than other p-tau epitopes. We developed two novel Simoa immunoassays for CSF p-tau205 and p-tau202 and measured these phosphorylations in three independent cohorts encompassing the AD continuum, non-AD cases and cognitively unimpaired participants: a discovery cohort (n = 47), an unselected clinical cohort (n = 212) and a research cohort well-characterized by fluid and imaging biomarkers (n = 262). CSF p-tau205 increased progressively across the AD continuum, while CSF p-tau202 was increased only in AD and amyloid (Aß) and tau pathology positive (A+T+) cases (P < 0.01). In A+ cases, CSF p-tau205 and p-tau202 showed stronger associations with tau-PET (rSp205 = 0.67, rSp202 = 0.45) than Aß-PET (rSp205 = 0.40, rSp202 = 0.09). CSF p-tau205 increased gradually across tau-PET Braak stages (P < 0.01), whereas p-tau202 only increased in Braak V-VI (P < 0.0001). Both showed stronger regional associations with tau-PET than with Aß-PET, and CSF p-tau205 was significantly associated with Braak V-VI tau-PET regions. When assessing the contribution of Aß and tau pathologies (indexed by PET) to CSF p-tau205 and p-tau202 variance, tau pathology was found to be the most prominent contributor in both cases (CSF p-tau205: R2 = 69.7%; CSF p-tau202: R2 = 85.6%) Both biomarkers associated with brain atrophy measurements globally (rSp205 = - 0.36, rSp202 = - 0.33) and regionally, and correlated with cognition (rSp205 = - 0.38/- 0.40, rSp202 = - 0.20/- 0.29). In conclusion, we report the first high-throughput CSF p-tau205 immunoassay for the in vivo quantification of tau pathology in AD, and a potentially cost-effective alternative to tau-PET in clinical settings and clinical trials.


Assuntos
Doença de Alzheimer , Humanos , Emaranhados Neurofibrilares , Proteínas Amiloidogênicas , Anticorpos , Biomarcadores
5.
Acta Neuropathol ; 148(1): 8, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026031

RESUMO

Alzheimer's disease (AD) is characterized by extracellular amyloid plaques containing amyloid-ß (Aß) peptides, intraneuronal neurofibrillary tangles, extracellular neuropil threads, and dystrophic neurites surrounding plaques composed of hyperphosphorylated tau protein (pTau). Aß can also deposit in blood vessel walls leading to cerebral amyloid angiopathy (CAA). While amyloid plaques in AD brains are constant, CAA varies among cases. The study focuses on differences observed between rare and poorly studied patient groups with APP duplications (APPdup) and Down syndrome (DS) reported to have higher frequencies of elevated CAA levels in comparison to sporadic AD (sAD), most of APP mutations, and controls. We compared Aß and tau pathologies in postmortem brain tissues across cases and Aß peptides using mass spectrometry (MS). We further characterized the spatial distribution of Aß peptides with MS-brain imaging. While intraparenchymal Aß deposits were numerous in sAD, DS with AD (DS-AD) and AD with APP mutations, these were less abundant in APPdup. On the contrary, Aß deposits in the blood vessels were abundant in APPdup and DS-AD while only APPdup cases displayed high Aß deposits in capillaries. Investigation of Aß peptide profiles showed a specific increase in Aßx-37, Aßx-38 and Aßx-40 but not Aßx-42 in APPdup cases and to a lower extent in DS-AD cases. Interestingly, N-truncated Aß2-x peptides were particularly increased in APPdup compared to all other groups. This result was confirmed by MS-imaging of leptomeningeal and parenchymal vessels from an APPdup case, suggesting that CAA is associated with accumulation of shorter Aß peptides truncated both at N- and C-termini in blood vessels. Altogether, this study identified striking differences in the localization and composition of Aß deposits between AD cases, particularly APPdup and DS-AD, both carrying three genomic copies of the APP gene. Detection of specific Aß peptides in CSF or plasma of these patients could improve the diagnosis of CAA and their inclusion in anti-amyloid immunotherapy treatments.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Encéfalo , Angiopatia Amiloide Cerebral , Síndrome de Down , Humanos , Síndrome de Down/patologia , Síndrome de Down/metabolismo , Síndrome de Down/genética , Síndrome de Down/complicações , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/patologia , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/metabolismo , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Placa Amiloide/patologia , Placa Amiloide/metabolismo
6.
J Neurosci ; 42(33): 6453-6468, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35835549

RESUMO

Individuals who have Down syndrome (DS) frequently develop early onset Alzheimer's disease (AD), a neurodegenerative condition caused by the buildup of aggregated amyloid-ß (Aß) and tau proteins in the brain. Aß is produced by amyloid precursor protein (APP), a gene located on chromosome 21. People who have DS have three copies of chromosome 21 and thus also an additional copy of APP; this genetic change drives the early development of AD in these individuals. Here we use a combination of next-generation mouse models of DS (Tc1, Dp3Tyb, Dp(10)2Yey and Dp(17)3Yey) and a knockin mouse model of Aß accumulation (AppNL-F ) to determine how chromosome 21 genes, other than APP, modulate APP/Aß in the brain when in three copies. Using both male and female mice, we demonstrate that three copies of other chromosome 21 genes are sufficient to partially ameliorate Aß accumulation in the brain. We go on to identify a subregion of chromosome 21 that contains the gene(s) causing this decrease in Aß accumulation and investigate the role of two lead candidate genes, Dyrk1a and Bace2 Thus, an additional copy of chromosome 21 genes, other than APP, can modulate APP/Aß in the brain under physiological conditions. This work provides critical mechanistic insight into the development of disease and an explanation for the typically later age of onset of dementia in people who have AD in DS, compared with those who have familial AD caused by triplication of APP SIGNIFICANCE STATEMENT Trisomy of chromosome 21 is a commonly occurring genetic risk factor for early-onset Alzheimer's disease (AD), which has been previously attributed to people with Down syndrome having three copies of the amyloid precursor protein (APP) gene, which is encoded on chromosome 21. However, we have shown that an extra copy of other chromosome 21 genes modifies AD-like phenotypes independently of APP copy number (Wiseman et al., 2018; Tosh et al., 2021). Here, we use a mapping approach to narrow down the genetic cause of the modulation of pathology, demonstrating that gene(s) on chromosome 21 decrease Aß accumulation in the brain, independently of alterations to full-length APP or C-terminal fragment abundance and that just 38 genes are sufficient to cause this.


Assuntos
Doença de Alzheimer , Síndrome de Down , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/genética , Feminino , Humanos , Masculino , Camundongos
7.
Acta Neuropathol ; 147(1): 5, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159140

RESUMO

Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Proteínas tau , Autopsia , Biomarcadores
8.
Alzheimers Dement ; 19(10): 4609-4618, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36946611

RESUMO

INTRODUCTION: Secernin-1 (SCRN1) is a neuronal protein that co-localizes with neurofibrillary tangles in Alzheimer's disease (AD), but not with tau inclusions in corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), or Pick's disease. METHODS: We measured SCRN1 concentration in cerebrospinal fluid (CSF) using a novel mass spectrometric parallel reaction monitoring method in three clinical cohorts comprising patients with neurochemically characterized AD (n = 25) and controls (n = 28), clinically diagnosed Parkinson's disease (PD; n = 38), multiple system atrophy (MSA; n = 31), PSP (n = 20), CBD (n = 8), healthy controls (n = 37), and neuropathology-confirmed AD (n = 47). RESULTS: CSF SCRN1 was significantly increased in AD (P < 0.01, fold change = 1.4) compared to controls (receiver operating characteristic area under the curve = 0.78) but not in CBD, PSP, PD, or MSA. CSF SCRN1 positively correlated with CSF total tau (R = 0.78, P = 1.1 × 10-13 ), phosphorylated tau181 (R = 0.64, P = 3.2 × 10-8 ), and Braak stage and negatively correlated with Mini-Mental State Examination score. DISCUSSION: CSF SCRN1 is a candidate biomarker of AD, reflecting tau pathology. HIGHLIGHTS: We developed a parallel reaction monitoring assay to measure secernin-1 (SCRN1) in cerebrospinal fluid (CSF). CSF SCRN1 was increased in Alzheimer's disease compared to healthy controls. CSF SCRN1 remained unchanged in Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, or corticobasal degeneration compared to controls. CSF SCRN1 correlated strongly with CSF phosphorylated tau and total tau. CSF SCRN1 increased across Braak stages and negatively correlated with Mini-Mental State Examination score.


Assuntos
Doença de Alzheimer , Proteínas do Tecido Nervoso , Proteínas tau , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Degeneração Corticobasal/líquido cefalorraquidiano , Degeneração Corticobasal/metabolismo , Degeneração Corticobasal/patologia , Atrofia de Múltiplos Sistemas/líquido cefalorraquidiano , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Paralisia Supranuclear Progressiva/líquido cefalorraquidiano , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
9.
J Cell Mol Med ; 26(3): 880-892, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34931449

RESUMO

The aggregation of ß-amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer's disease pathogenesis. Aß42 is one of several Aß peptides, all of Aß30 to Aß43 that are produced as a result of γ-secretase-mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ-Secretase modulators (GSMs) represent a promising class of Aß42-lowering anti-amyloidogenic compounds for the treatment of AD. Gamma-secretase modulators change the relative proportion of secreted Aß peptides, while sparing the γ-secretase-mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ-secretase cleavage of three γ-secretase substrates, E-cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ-secretase-dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ-secretase processing of EphA4 and EphB2 results in the release of several Aß-like peptides, but that only the production of Aß-like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aß modulation. Collectively, these results suggest that GSMs are selective for γ-secretase-mediated Aß production.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos , Mutação
10.
J Neurochem ; 163(3): 233-246, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36102248

RESUMO

Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant forms of dementia caused by mutations in the integral membrane protein 2B (ITM2B, also known as BRI2) gene. Secretase processing of mutant BRI2 leads to secretion and deposition of BRI2-derived amyloidogenic peptides, ABri and ADan that resemble APP/ß-amyloid (Aß) pathology, which is characteristic of Alzheimer's disease (AD). Amyloid pathology in FBD/FDD manifests itself predominantly in the microvasculature by ABri/ADan containing cerebral amyloid angiopathy (CAA). While ABri and ADan peptide sequences differ only in a few C-terminal amino acids, CAA in FDD is characterized by co-aggregation of ADan with Aß, while in contrast no Aß deposition is observed in FBD. The fact that FDD patients display an earlier and more severe disease onset than FBD suggests a potential role of ADan and Aß co-aggregation that promotes a more rapid disease progression in FDD compared to FBD. It is therefore critical to delineate the chemical signatures of amyloid aggregation in these two vascular dementias. This in turn will increase the knowledge on the pathophysiology of these diseases and the pathogenic role of heterogenous amyloid peptide interactions and deposition, respectively. Herein, we used matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in combination with hyperspectral, confocal microscopy based on luminescent conjugated oligothiophene probes (LCO) to delineate the structural traits and associated amyloid peptide patterns of single CAA in postmortem brain tissue of patients with FBD, FDD as well as sporadic CAA without AD (CAA+) that show pronounced CAA without parenchymal plaques. The results show that CAA in both FBD and FDD consist of N-terminally truncated- and pyroglutamate-modified amyloid peptide species (ADan and ABri), but that ADan peptides in FDD are also extensively C-terminally truncated as compared to ABri in FBD, which contributes to hydrophobicity of ADan species. Further, CAA in FDD showed co-deposition with Aß x-42 and Aß x-40 species. CAA+ vessels were structurally more mature than FDD/FBD CAA and contained significant amounts of pyroglutamated Aß. When compared with FDD, Aß in CAA+ showed more C-terminal and less N-terminally truncations. In FDD, ADan showed spatial co-localization with Aß3pE-40 and Aß3-40 but not with Aßx-42 species. This suggests an increased aggregation propensity of Aß in FDD that promotes co-aggregation of both Aß and ADan. Further, CAA maturity appears to be mainly governed by Aß content based on the significantly higher 500/580 patterns observed in CAA+ than in FDD and FBD, respectively. Together this is the first study of its kind on comprehensive delineation of Bri2 and APP-derived amyloid peptides in single vascular plaques in both FDD/FBD and sporadic CAA that provides new insight in non-AD-related vascular amyloid pathology. Cover Image for this issue: https://doi.org/10.1111/jnc.15424.


Assuntos
Doença de Alzheimer , Neuropatias Amiloides Familiares , Angiopatia Amiloide Cerebral , Demência , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Angiopatia Amiloide Cerebral/genética , Demência/patologia , Dinamarca , Glicoproteínas de Membrana/metabolismo , Placa Amiloide , Inglaterra
11.
FASEB J ; 35(8): e21745, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34191346

RESUMO

Studies are needed to identify useful biomarkers to assess the severity and prognosis of COVID-19 disease, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) virus. Here, we examine the levels of various plasma species of the SARS-CoV-2 host receptor, the angiotensin-converting enzyme 2 (ACE2), in patients at different phases of the infection. Human plasma ACE2 species were characterized by immunoprecipitation and western blotting employing antibodies against the ectodomain and the C-terminal domain, using a recombinant human ACE2 protein as control. In addition, changes in the cleaved and full-length ACE2 species were also examined in serum samples derived from humanized K18-hACE2 mice challenged with a lethal dose of SARS-CoV-2. ACE2 immunoreactivity was present in human plasma as several molecular mass species that probably comprise truncated (70 and 75 kDa) and full-length forms (95, 100, 130, and 170 kDa). COVID-19 patients in the acute phase of infection (n = 46) had significantly decreased levels of ACE2 full-length species, while a truncated 70-kDa form was marginally higher compared with non-disease controls (n = 26). Levels of ACE2 full-length species were in the normal range in patients after a recovery period with an interval of 58-70 days (n = 29), while the 70-kDa species decreased. Levels of the truncated ACE2 species served to discriminate between individuals infected by SARS-CoV-2 and those infected with influenza A virus (n = 17). In conclusion, specific plasma ACE2 species are altered in patients with COVID-19 and these changes normalize during the recovery phase. Alterations in ACE2 species following SARS-CoV-2 infection warrant further investigation regarding their potential usefulness as biomarkers for the disease process and to asses efficacy during vaccination.


Assuntos
Enzima de Conversão de Angiotensina 2/sangue , COVID-19/sangue , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/líquido cefalorraquidiano , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/urina , Biomarcadores/sangue , Química Encefálica , Colo/química , Feminino , Humanos , Fígado/química , Masculino , Pessoa de Meia-Idade , Saliva/química
12.
Mol Psychiatry ; 26(10): 5766-5788, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32647257

RESUMO

A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of ß-amyloid-(Aß)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aß deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical ß and γ-secretase inhibition. We found that T21 organoids secrete increased proportions of Aß-preventing (Aß1-19) and Aß-degradation products (Aß1-20 and Aß1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Síndrome de Down , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Síndrome de Down/genética , Genes Supressores , Humanos , Organoides/metabolismo , Trissomia
13.
J Neurochem ; 159(2): 234-257, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245565

RESUMO

Since its discovery, amyloid-ß (Aß) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aß plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aß peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aß peptide (Aß42) in cerebrospinal fluid (CSF) was put forward as reflective of Aß peptide aggregation in the brain. With time, Aß oligomers-the proposed toxic Aß intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aß peptide backbone, makes the characterization of Aß aggregates and their role in AD progression challenging. In this review, we revisit the history of Aß discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aß peptide, and how MS is aiding the characterization of higher order Aß assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aß as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aß in AD research.


Assuntos
Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/análise , Química Encefálica , Espectrometria de Massas/métodos , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Animais , Humanos , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/líquido cefalorraquidiano , Placa Amiloide
14.
J Neurochem ; 159(2): 258-272, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473357

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid ß (Aß) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and Aß peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion Aß peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of Aß40 was higher in AD while for Aß42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of Aß40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of Aß.


Assuntos
Envelhecimento/patologia , Placa Amiloide/patologia , Sinapses/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Autopsia , Cerebelo/química , Feminino , Lobo Frontal/química , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/química , Lobo Occipital/química , Sinapses/química
15.
J Neurochem ; 157(3): 816-833, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33249594

RESUMO

Neurogranin (Ng) is a 78 amino acid neuronal protein and a biomarker candidate for Alzheimer's disease (AD). Ng has been suggested to bind to calmodulin and phosphatidic acid via its centrally located IQ domain. Ng is cleaved within this functionally important domain, yielding the majority of fragments identified in cerebrospinal fluid (CSF), suggesting that cleavage of Ng may be a mechanism to regulate its function. Up to now, Ng has been shown to be present in CSF as both C-terminal fragments as well as full-length protein. To obtain an overview of the different molecular forms of Ng present in CSF, we show by size exclusion chromatography (SEC), immunoblotting, immunoprecipitation, and MS that Ng is present in CSF as several molecular forms. Besides monomeric full-length Ng, also higher molecular weight forms of Ng, and C-terminal- and previously not identified N-terminal fragments were observed. We found by immunodepletion that C-terminal peptides contribute on average to ~50% of the total-Ng ELISA signal in CSF samples. There were no differences in the overall C-terminal fragment/total-Ng ratios between samples from AD and control groups. In addition, we found that monomeric Ng and its C-terminal fragments bind to heparin via a heparin-binding motif, which might be of relevance for their export mechanism from neurons. Taken together, this study highlights the presence of several molecular forms of Ng in CSF, comprising monomeric full-length Ng, and N- and C-terminal truncations of Ng, as well as larger forms of still unknown composition.


Assuntos
Neurogranina/líquido cefalorraquidiano , Neurogranina/química , Sequência de Aminoácidos , Química Encefálica , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Heparina/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Espectrometria de Massas , Estrutura Molecular , Peso Molecular , Ligação Proteica , Ultrafiltração
16.
Acta Neuropathol ; 141(5): 709-724, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33585983

RESUMO

The quantification of phosphorylated tau in biofluids, either cerebrospinal fluid (CSF) or plasma, has shown great promise in detecting Alzheimer's disease (AD) pathophysiology. Tau phosphorylated at threonine 231 (p-tau231) is one such biomarker in CSF but its usefulness as a blood biomarker is currently unknown. Here, we developed an ultrasensitive Single molecule array (Simoa) for the quantification of plasma p-tau231 which was validated in four independent cohorts (n = 588) in different settings, including the full AD continuum and non-AD neurodegenerative disorders. Plasma p-tau231 was able to identify patients with AD and differentiate them from amyloid-ß negative cognitively unimpaired (CU) older adults with high accuracy (AUC = 0.92-0.94). Plasma p-tau231 also distinguished AD patients from patients with non-AD neurodegenerative disorders (AUC = 0.93), as well as from amyloid-ß negative MCI patients (AUC = 0.89). In a neuropathology cohort, plasma p-tau231 in samples taken on avergae 4.2 years prior to post-mortem very accurately identified AD neuropathology in comparison to non-AD neurodegenerative disorders (AUC = 0.99), this is despite all patients being given an AD dementia diagnosis during life. Plasma p-tau231 was highly correlated with CSF p-tau231, tau pathology as assessed by [18F]MK-6240 positron emission tomography (PET), and brain amyloidosis by [18F]AZD469 PET. Remarkably, the inflection point of plasma p-tau231, increasing as a function of continuous [18F]AZD469 amyloid-ß PET standardized uptake value ratio, was shown to be earlier than standard thresholds of amyloid-ß PET positivity and the increase of plasma p-tau181. Furthermore, plasma p-tau231 was significantly increased in amyloid-ß PET quartiles 2-4, whereas CSF p-tau217 and plasma p-tau181 increased only at quartiles 3-4 and 4, respectively. Finally, plasma p-tau231 differentiated individuals across the entire Braak stage spectrum, including Braak staging from Braak 0 through Braak I-II, which was not observed for plasma p-tau181. To conclude, this novel plasma p-tau231 assay identifies the clinical stages of AD and neuropathology equally well as plasma p-tau181, but increases earlier, already with subtle amyloid-ß deposition, prior to the threshold for amyloid-ß PET positivity has been attained, and also in response to early brain tau deposition. Thus, plasma p-tau231 is a promising novel biomarker of emerging AD pathology with the potential to facilitate clinical trials to identify vulnerable populations below PET threshold of amyloid-ß positivity or apparent entorhinal tau deposition.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Proteínas tau/sangue , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação
17.
Brain ; 143(2): 650-660, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834365

RESUMO

To date, there is no validated fluid biomarker for tau pathology in Alzheimer's disease, with contradictory results from studies evaluating the correlation between phosphorylated tau in CSF with tau PET imaging. Tau protein is subjected to proteolytic processing into fragments before being secreted to the CSF. A recent study suggested that tau cleavage after amino acid 368 by asparagine endopeptidase (AEP) is upregulated in Alzheimer's disease. We used immunoprecipitation followed by mass spectrometric analyses to evaluate the presence of tau368 species in CSF. A novel Simoa® assay for quantification of tau368 in CSF was developed, while total tau (t-tau) was measured by ELISA and the presence of tau368 in tangles was evaluated using immunohistochemistry. The diagnostic utility of tau368 was first evaluated in a pilot study (Alzheimer's disease = 20, control = 20), then in a second cohort where the IWG-2 biomarker criteria were applied (Alzheimer's disease = 37, control = 45), and finally in a third cohort where the correlation with 18F-GTP1 tau PET was evaluated (Alzheimer's disease = 38, control = 11). The tau368/t-tau ratio was significantly decreased in Alzheimer's disease (P < 0.001) in all cohorts. Immunohistochemical staining demonstrated that tau fragments ending at 368 are present in tangles. There was a strong negative correlation between the CSF tau368/t-tau ratio and 18F-GTP1 retention. Our data suggest that tau368 is a tangle-enriched fragment and that the CSF ratio tau368/t-tau reflects tangle pathology. This novel tau biomarker could be used to improve diagnosis of Alzheimer's disease and to facilitate the development of drug candidates targeting tau pathology. Furthermore, future longitudinal studies will increase our understanding of tau pathophysiology in Alzheimer's disease and other tauopathies.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
18.
Alzheimers Dement ; 17(5): 755-767, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33252199

RESUMO

INTRODUCTION: Phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) is an established Alzheimer's disease (AD) biomarker. Novel immunoassays targeting N-terminal and mid-region p-tau181 and p-tau217 fragments are available, but head-to-head comparison in clinical settings is lacking. METHODS: N-terminal-directed p-tau217 (N-p-tau217), N-terminal-directed p-tau181 (N-p-tau181), and standard mid-region p-tau181 (Mid-p-tau181) biomarkers in CSF were evaluated in three cohorts (n = 503) to assess diagnostic performance, concordance, and associations with amyloid beta (Aß). RESULTS: CSF N-p-tau217 and N-p-tau181 had better concordance (88.2%) than either with Mid-p-tau181 (79.7%-82.7%). N-p-tau217 and N-p-tau181 were significantly increased in early mild cognitive impairment (MCI)-AD (A+T-N-) without changes in Mid-p-tau181 until AD-dementia. N-p-tau217 and N-p-tau181 identified Aß pathophysiology (area under the curve [AUC] = 94.8%-97.1%) and distinguished MCI-AD from non-AD MCI (AUC = 82.6%-90.5%) signficantly better than Mid-p-tau181 (AUC = 91.2% and 70.6%, respectively). P-tau biomarkers equally differentiated AD from non-AD dementia (AUC = 99.1%-99.8%). DISCUSSION: N-p-tau217 and N-p-tau181 could improve diagnostic accuracy in prodromal-AD and clinical trial recruitment as both identify Aß pathophysiology and differentiate early MCI-AD better than Mid-p-tau181.


Assuntos
Doença de Alzheimer/diagnóstico , Biomarcadores , Fosforilação , Proteínas tau/líquido cefalorraquidiano , Idoso , Disfunção Cognitiva/diagnóstico , Feminino , França , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Suécia
19.
J Biol Chem ; 294(17): 6719-6732, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30814252

RESUMO

Amyloid-ß (Aß) pathology in Alzheimer's disease (AD) is characterized by the formation of polymorphic deposits comprising diffuse and cored plaques. Because diffuse plaques are predominantly observed in cognitively unaffected, amyloid-positive (CU-AP) individuals, pathogenic conversion into cored plaques appears to be critical to AD pathogenesis. Herein, we identified the distinct Aß species associated with amyloid polymorphism in brain tissue from individuals with sporadic AD (s-AD) and CU-AP. To this end, we interrogated Aß polymorphism with amyloid conformation-sensitive dyes and a novel in situ MS paradigm for chemical characterization of hyperspectrally delineated plaque morphotypes. We found that maturation of diffuse into cored plaques correlated with increased Aß1-40 deposition. Using spatial in situ delineation with imaging MS (IMS), we show that Aß1-40 aggregates at the core structure of mature plaques, whereas Aß1-42 localizes to diffuse amyloid aggregates. Moreover, we observed that diffuse plaques have increased pyroglutamated Aßx-42 levels in s-AD but not CU-AP, suggesting an AD pathology-related, hydrophobic functionalization of diffuse plaques facilitating Aß1-40 deposition. Experiments in tgAPPSwe mice verified that, similar to what has been observed in human brain pathology, diffuse deposits display higher levels of Aß1-42 and that Aß plaque maturation over time is associated with increases in Aß1-40. Finally, we found that Aß1-40 deposition is characteristic for cerebral amyloid angiopathy deposition and maturation in both humans and mice. These results indicate that N-terminal Aßx-42 pyroglutamation and Aß1-40 deposition are critical events in priming and maturation of pathogenic Aß from diffuse into cored plaques, underlying neurotoxic plaque development in AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Neurobiol Dis ; 134: 104645, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669672

RESUMO

Synapse impairment is thought to be an early event in Alzheimer's disease (AD); dysfunction and loss of synapses are linked to cognitive symptoms that precede neuronal loss and neurodegeneration. Neurogranin (Ng) is a somatodendritic protein that has been shown to be reduced in brain tissue but increased in the cerebrospinal fluid (CSF) of AD patients compared to age-matched controls. High levels of CSF Ng have been shown to reflect a more rapid AD progression. To gauge the translational value of Ng as a biomarker, we developed a new, highly sensitive, digital enzyme-linked immunosorbent assay (ELISA) on the Simoa platform to measure Ng in both mouse and human CSF. We investigated and confirmed that Ng levels are increased in the CSF of patients with AD compared to controls. In addition, we explored how Ng is altered in the brain and CSF of transgenic mice that display progressive neuronal loss and synaptic degeneration following the induction of p25 overexpression. In this model, we found that Ng levels increased in CSF when neurodegeneration was induced, peaking after 2 weeks, while they decreased in brain. Our data suggest that CSF Ng is a biomarker of synaptic degeneration with translational value.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática/métodos , Neurogranina/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Degeneração Neural/líquido cefalorraquidiano , Degeneração Neural/diagnóstico , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa