Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(15): 9510-9518, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32650635

RESUMO

The environmental risk of natural and synthetic ligands of the nuclear progesterone receptor (nPR) has been pointed out, however there is still a lack of mechanistic information regarding their ability to interact with nuclear PR in aquatic species. To identify possible interspecies differences, we assessed in vitro the ability of manifold progestins to transactivate zebrafish (zf) and human (h) PRs, using two established reporter cell lines, U2OS-zfPR and HELN-hPR, respectively. Reference ligands highlighted some differences between the two receptors. The reference human agonist ligands promegestone and progesterone induced luciferase activity in both cell lines in a concentration-dependent manner, whereas the natural zebrafish progestin 17α,20ß-dihydroxy-4-pregnen-3-one activated zfPR but not hPR. The potent human PR antagonist mifepristone (RU486) blocked PR-induced luciferase in both cell models but with different potencies. In addition, a set of 22 synthetic progestins were screened on the two cell lines. Interestingly, all of the tested compounds activated hPR in the HELN-hPR cell line, whereas the majority of them acted as zfPR antagonists in U2OS-zfPR. Such zfPR-specific response was further confirmed in zebrafish liver cells. This study provides novel information regarding the activity of a large set of progestins on human and zebrafish PR and highlights major interspecies differences in their activity, which may result in differential effects of progestins between fish and humans.


Assuntos
Progesterona , Progestinas , Animais , Humanos , Mifepristona/farmacologia , Receptores de Progesterona , Peixe-Zebra
2.
Gen Comp Endocrinol ; 288: 113345, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812531

RESUMO

Natural and synthetic estrogens and progestins are widely used in human and veterinary medicine and are detected in waste and surface waters. Our previous studies have clearly shown that a number of these substances targets the brain to induce the estrogen-regulated brain aromatase expression but the consequences on brain development remain virtually unexplored. The aim of the present study was therefore to investigate the effect of estradiol (E2), progesterone (P4) and norethindrone (NOR), a 19-nortestosterone progestin, on zebrafish larval neurogenesis. We first demonstrated using real-time quantitative PCR that nuclear estrogen and progesterone receptor brain expression is impacted by E2, P4 and NOR. We brought evidence that brain proliferative and apoptotic activities were differentially affected depending on the steroidal hormone studied, the concentration of steroids and the region investigated. Our findings demonstrate for the first time that steroid compounds released in aquatic environment have the capacity to disrupt key cellular events involved in brain development in zebrafish embryos further questioning the short- and long-term consequences of this disruption on the physiology and behavior of organisms.


Assuntos
Congêneres do Estradiol/farmacologia , Estrogênios/farmacologia , Sistema Nervoso/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Congêneres da Progesterona/farmacologia , Progesterona/farmacologia , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero , Desenvolvimento Embrionário/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Estradiol/farmacologia , Estrogênios/análogos & derivados , Estrogênios/síntese química , Humanos , Ligantes , Nandrolona/farmacologia , Sistema Nervoso/embriologia , Células Neuroendócrinas/efeitos dos fármacos , Células Neuroendócrinas/fisiologia , Noretindrona/farmacologia , Progesterona/análogos & derivados , Progesterona/síntese química , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/agonistas , Receptores de Progesterona/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
3.
Toxicol Appl Pharmacol ; 380: 114709, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31415773

RESUMO

The high volume production compound bisphenol A (BPA) is of environmental concern largely because of its estrogenic activity. Consequently, BPA analogues have been synthesized to be considered as replacement molecules for BPA. These analogues need to be thoroughly evaluated for their estrogenic activity. Here, we combined mechanism zebrafish-based assays to examine estrogenic and anti-estrogenic activities of BPA and two of its analogues, bisphenol AF (BPAF) and bisphenol C (BPC) in vitro and in vivo. In vitro reporter cell lines were used to investigate agonistic and antagonistic effects of the three bisphenols on the three zebrafish estrogen receptors. The transgenic Tg(5 × ERE:GFP) and Cyp19a1b-GFP zebrafish lines were then used to analyze estrogenic and anti-estrogenic responses of the three bisphenols in vivo. BPA, BPAF and BPC were agonists with different potencies for the three zebrafish estrogen receptors in vitro. The potent zfERα-mediated activity of BPA and BPAF in vitro resulted in vivo by activation of GFP expression in zebrafish larvae in the heart (zfERα-dependent) at lower concentrations, and in the liver (zfERß-dependent) at higher concentrations. BPC induced zfERß-mediated luciferase expression in vitro, and the zfERß agonism led to activation of GFP expression in the liver and the brain in vivo. In addition, BPC acted as a full antagonist on zfERα, and completely inhibited estrogen-induced GFP expression in the heart of the zebrafish larvae. To summarize, applying a combination of zebrafish-based in vitro and in vivo methods to evaluate bisphenol analogues for estrogenic activity will facilitate the prioritization of these chemicals for further analysis in higher vertebrates as well as the risk assessment in humans.


Assuntos
Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Embrião não Mamífero , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores de Estrogênio/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Gen Comp Endocrinol ; 261: 179-189, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28648994

RESUMO

In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs.


Assuntos
Aromatase/genética , Gônadas/metabolismo , Diferenciação Sexual/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Aromatase/metabolismo , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Gônadas/fisiologia , Proteínas de Fluorescência Verde/genética , Masculino , Ovário/embriologia , Ovário/metabolismo , Diferenciação Sexual/fisiologia , Testículo/embriologia , Testículo/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Int J Mol Sci ; 19(4)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649157

RESUMO

Triclosan (TCS), an antimicrobial agent widely found in the aquatic environment, is suspected to act as an endocrine disrupting compound, however mechanistic information is lacking in regards to aquatic species. This study assessed the ability of TCS to interfere with estrogen receptor (ER) transcriptional activity, in zebrafish-specific in vitro and in vivo reporter gene assays. We report that TCS exhibits a lack of either agonistic or antagonistic effects on a panel of ER-expressing zebrafish (ZELH-zfERα and -zfERß) and human (MELN) cell lines. At the organism level, TCS at concentrations of up to 0.3 µM had no effect on ER-regulated brain aromatase gene expression in transgenic cyp19a1b-GFP zebrafish embryos. At a concentration of 1 µM, TCS interfered with the E2 response in an ambivalent manner by potentializing a low E2 response (0.625 nM), but decreasing a high E2 response (10 nM). Altogether, our study suggests that while modulation of ER-regulated genes by TCS may occur in zebrafish, it does so irrespective of a direct binding and activation of zfERs.


Assuntos
Estradiol/metabolismo , Receptores de Estrogênio/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triclosan/farmacologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Humanos , Células MCF-7 , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
Int J Mol Sci ; 19(4)2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29614754

RESUMO

Comprehension of compound interactions in mixtures is of increasing interest to scientists, especially from a perspective of mixture risk assessment. However, most of conducted studies have been dedicated to the effects on gonads, while only few of them were. interested in the effects on the central nervous system which is a known target for estrogenic compounds. In the present study, the effects of estradiol (E2), a natural estrogen, and genistein (GEN), a phyto-estrogen, on the brain ER-regulated cyp19a1b gene in radial glial cells were investigated alone and in mixtures. For that, zebrafish-specific in vitro and in vivo bioassays were used. In U251-MG transactivation assays, E2 and GEN produced antagonistic effects at low mixture concentrations. In the cyp19a1b-GFP transgenic zebrafish, this antagonism was observed at all ratios and all concentrations of mixtures, confirming the in vitro effects. In the present study, we confirm (i) that our in vitro and in vivo biological models are valuable complementary tools to assess the estrogenic potency of chemicals both alone and in mixtures; (ii) the usefulness of the ray design approach combined with the concentration-addition modeling to highlight interactions between mixture components.


Assuntos
Aromatase/metabolismo , Encéfalo/metabolismo , Estradiol/farmacologia , Genisteína/farmacologia , Animais , Animais Geneticamente Modificados , Aromatase/genética , Encéfalo/efeitos dos fármacos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Ecotoxicol Environ Saf ; 142: 150-156, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28407500

RESUMO

Bisphenol A (BPA) is a widely used chemical that has been extensively studied as an endocrine-disrupting chemical (EDC). Other bisphenols sharing close structural features with BPA, are increasingly being used as alternatives, increasing the need to assess associated hazards to the endocrine system. In the present study, the estrogenic activity of BPA, bisphenol S (BPS) and bisphenol F (BPF) was assessed by using a combination of zebrafish-specific mechanism-based in vitro and in vivo assays. The three bisphenols were found to efficiently transactivate all zebrafish estrogen receptor (zfER) subtypes in zebrafish hepatic reporter cell lines (ZELH-zfERs). BPA was selective for zfERα while BPS and BPF were slightly more potent on zfERß subtypes. We further documented the estrogenic effect in vivo by quantifying the expression of brain aromatase using a transgenic cyp19a1b-GFP zebrafish embryo assay. All three bisphenols induced GFP in a concentration-dependent manner. BPS only partially induced brain aromatase at the highest tested concentrations (>30µM) while BPA and BPF strongly induced GFP, in an ER-dependent manner, at 1-10µM. Furthermore, we show that BPF strongly induced vitellogenin synthesis in adult male zebrafish. Overall, this study demonstrates the estrogenic activity of BPA, BPF and BPS in different cell- and tissue-contexts and at different stages of development. Differences between in vitro and in vivo responses are discussed in light of selective ER activation and the fate of the compounds in the models. This study confirms the relevance of combining cellular and whole-organism bioassays in a unique model species for the hazard assessment of candidate EDCs.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Sulfonas/toxicidade , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Aromatase/metabolismo , Bioensaio , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Linhagem Celular , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Estrogênios/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Masculino , Receptores de Estrogênio/genética , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
Int J Mol Sci ; 18(4)2017 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-28346357

RESUMO

Zebrafish embryo assays are increasingly used in the toxicological assessment of endocrine disruptors. Among other advantages, these models are 3R-compliant and are fit for screening purposes. Biotransformation processes are well-recognized as a critical factor influencing toxic response, but major gaps of knowledge exist regarding the characterization of functional metabolic capacities expressed in zebrafish. Comparative metabolic studies between embryos and adults are even scarcer. Using ³H-labeled chemicals, we examined the fate of two estrogenic emerging contaminants, benzophenone-2 (BP2) and bisphenol S (BPS), in 4-day embryos and adult zebrafish. BPS and BP2 were exclusively metabolized through phase II pathways, with no major qualitative difference between larvae and adults except the occurrence of a BP2-di-glucuronide in adults. Quantitatively, the biotransformation of both molecules was more extensive in adults. For BPS, glucuronidation was the predominant pathway in adults and larvae. For BP2, glucuronidation was the major pathway in larvae, but sulfation predominated in adults, with ca. 40% conversion of parent BP2 and an extensive release of several conjugates into water. Further larvae/adults quantitative differences were demonstrated for both molecules, with higher residue concentrations measured in larvae. The study contributes novel data regarding the metabolism of BPS and BP2 in a fish model and shows that phase II conjugation pathways are already functional in 4-dpf-old zebrafish. Comparative analysis of BP2 and BPS metabolic profiles in zebrafish larvae and adults further supports the use of zebrafish embryo as a relevant model in which toxicity and estrogenic activity can be assessed, while taking into account the absorption and fate of tested substances.


Assuntos
Benzofenonas/toxicidade , Fenóis/toxicidade , Sulfonas/toxicidade , Peixe-Zebra/metabolismo , Animais , Benzofenonas/farmacocinética , Biotransformação , Larva/metabolismo , Fenóis/farmacocinética , Sulfonas/farmacocinética , Testes de Toxicidade/métodos , Peixe-Zebra/crescimento & desenvolvimento
9.
Toxicol Appl Pharmacol ; 305: 12-21, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27245768

RESUMO

The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERß1 or zfERß2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation.


Assuntos
Aromatase/metabolismo , Neuroglia/efeitos dos fármacos , Congêneres da Progesterona/farmacologia , Proteínas de Peixe-Zebra/metabolismo , Androgênios/farmacologia , Animais , Animais Geneticamente Modificados , Aromatase/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Tumoral , Estradiol/farmacologia , Estrogênios/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neuroglia/metabolismo , Receptores de Estrogênio/metabolismo , Testosterona/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
10.
J Appl Toxicol ; 36(6): 863-71, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26857037

RESUMO

The present study was conducted to assess the effects of Cd exposure on estrogen signaling in the zebrafish brain, as well as the potential protective role of Zn against Cd-induced toxicity. For this purpose, the effects on transcriptional activation of the estrogen receptors (ERs), aromatase B (Aro-B) protein expression and molecular expression of related genes were examined in vivo using wild-type and transgenic zebrafish embryos. For in vitro studies, an ER-negative glial cell line (U251MG) transfected with different zebrafish ER subtypes (ERα, ERß1 and ERß2) was also used. Embryos were exposed either to estradiol (E2 ), Cd, E2 +Cd or E2 +Cd+Zn for 72 h and cells were exposed to the same treatments for 30 h. Our results show that E2 treatment promoted the transcriptional activation of ERs and increased Aro-B expression, at both the protein and mRNA levels. Although exposure to Cd, does not affect the studied parameters when administered alone, it significantly abolished the E2 -stimulated transcriptional response of the reporter gene for the three ER subtypes in U251-MG cells, and clearly inhibited the E2 induction of Aro-B in radial glial cells of zebrafish embryos. These inhibitory effects were accompanied by a significant downregulation of the expression of esr1, esr2a, esr2b and cyp19a1b genes compared to the E2 -treated group used as a positive control. Zn administration during simultaneous exposure to E2 and Cd strongly stimulated zebrafish ERs transactivation and increased Aro-B protein expression, whereas mRNA levels of the three ERs as well as the cyp19a1b remained unchanged in comparison with Cd-treated embryos. In conclusion, our results clearly demonstrate that Cd acts as a potent anti-estrogen in vivo and in vitro, and that Cd-induced E2 antagonism can be reversed, at the protein level, by Zn supplement. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Encéfalo/efeitos dos fármacos , Intoxicação por Cádmio/prevenção & controle , Cádmio/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Zinco/uso terapêutico , Animais , Animais Geneticamente Modificados , Aromatase/genética , Aromatase/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Cádmio/química , Intoxicação por Cádmio/embriologia , Intoxicação por Cádmio/metabolismo , Intoxicação por Cádmio/veterinária , Linhagem Celular , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/toxicidade , Estrogênios/agonistas , Estrogênios/química , Estrogênios/metabolismo , Doenças dos Peixes/embriologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/prevenção & controle , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Humanos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Poluentes Químicos da Água/antagonistas & inibidores , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/agonistas , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Zigoto/efeitos dos fármacos , Zigoto/metabolismo , Zigoto/patologia
11.
Environ Sci Technol ; 49(6): 3860-8, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25679259

RESUMO

Several human and fish bioassays have been designed to characterize the toxicity and the estrogenic activity of chemicals. However, their biotransformation capability (bioactivation/detoxification processes) is rarely reported, although this can influence the estrogenic potency of test compounds. The fate of two estrogenic chemicals, the UV filter benzophenone-2 (BP2) and the bisphenol A substitute bisphenol S (BPS) was deciphered in eight human and zebrafish in vitro cell models, encompassing hepatic and mammary cellular contexts. BP2 and BPS were metabolized into a variety of gluco- and sulfo-conjugated metabolites. Similar patterns of BP2 and BPS biotransformation were observed among zebrafish models (primary hepatocytes, ZFL and ZELH-zfER cell lines). Interestingly, metabolic patterns in zebrafish models and in the human hepatic cell line HepaRG shared many similarities, while biotransformation rates in cell lines widely used for estrogenicity testing (MELN and T47D-KBLuc) were quantitatively low and qualitatively different. This study provides new data on the comparative metabolism of BP2 and BPS in human and fish cellular models that will help characterize their metabolic capabilities, and underlines the relevance of using in vitro zebrafish-based bioassays when screening for endocrine disrupting chemicals.


Assuntos
Benzofenonas/metabolismo , Estrogênios/toxicidade , Hepatócitos/metabolismo , Fenóis/metabolismo , Sulfonas/metabolismo , Peixe-Zebra/metabolismo , Animais , Biotransformação/efeitos dos fármacos , Bovinos , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-26099948

RESUMO

In zebrafish, the identification of the cells expressing steroidogenic enzymes and their regulators is far from completely fulfilled though it could provide crucial information on the elucidation of the role of these enzymes. The aim of this study was to better characterize the expression pattern of steroidogenic enzymes involved in estrogen and androgen production (Cyp17-I, Cyp11c1, Cyp19a1a and Cyp19a1b) and one of their regulators (Foxl2a) in zebrafish gonads. By using immunohistochemistry, we localized the steroid-producing cells in mature zebrafish gonads and determined different expression patterns between males and females. All these steroidogenic enzymes and Foxl2a were detected both in the testis and ovary. In the testis, they were all localized both in Leydig and germ cells except Cyp19a1b which was only detected in germ cells. In the ovary, Cyp17-I, Cyp19a1a and Foxl2a were immunolocalized in both somatic and germ cells while Cyp19a1b was only detected in germ cells and Cyp11c1 in somatic cells. Moreover, Cyp19a1a and Foxl2a did not display exactly the same patterns of spatial localization but their expressions were correlated suggesting a possible regulation of cyp19a1a gene by Foxl2a in zebrafish. Comparative analysis revealed a dimorphic expression of Cyp11c1, Cyp19a1a, Cyp19a1b and Foxl2a between males and females. Overall, our study provides a detailed description of the expression of proteins involved in the biosynthesis of steroidal hormones at the cellular scale within gonads, which is critical to further elucidating the intimate roles of the enzymes and the use of the zebrafish as a model in the field of endocrinology.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Gônadas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Aromatase/metabolismo , Feminino , Proteína Forkhead Box L2 , Gônadas/citologia , Imuno-Histoquímica , Isoenzimas/metabolismo , Masculino , Microscopia de Fluorescência , Ovário/citologia , Ovário/metabolismo , Esteroide 11-beta-Hidroxilase/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Testículo/citologia , Testículo/metabolismo
13.
Toxicol Appl Pharmacol ; 280(1): 60-9, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25106122

RESUMO

Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERß), whereas the zebrafish genome encodes three ERs, zfERα and two zfERßs (zfERß1 and zfERß2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERß selective agonists displayed greater potency for zfERα as compared to zfERßs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.


Assuntos
Exposição Ambiental , Estrogênios/metabolismo , Receptores de Estrogênio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Estrogênios/química , Estrogênios/farmacologia , Feminino , Genes Reporter/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Receptores de Estrogênio/química , Receptores de Estrogênio/genética , Peixe-Zebra
14.
Environ Sci Technol ; 48(1): 781-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24295030

RESUMO

Zebrafish (Danio rerio) is a widely used model for toxicological studies, in particular those related to investigations on endocrine disruption. The development and regulatory use of in vivo and in vitro tests based on this species can be enhanced by toxicokinetic modeling. For this reason, we propose a physiologically based toxicokinetic (PBTK) model for zebrafish describing the uptake and disposition of organic chemicals. The model is based on literature data on zebrafish, other cyprinidae and other fish families, new experimental physiological information (volumes, lipids and water contents) obtained from zebrafish, and chemical-specific parameters predicted by generic models. The relevance of available models predicting the latter parameters was evaluated with respect to gill uptake and partition coefficients in zebrafish. This evaluation benefited from the fact that the influence of confounding factors such as body weight and temperature on ventilation rate was included in our model. The predictions for six chemicals (65 data points) yielded by our PBTK model were compared to available toxicokinetics data for zebrafish and 88% of them were within a factor of 5 of the corresponding experimental values. Sensitivity analysis highlighted that the 1-octanol/water partition coefficient, the metabolism rate, and all the parameters that enable the prediction of assimilation efficiency and partitioning of chemicals need to be precisely determined in order to allow an effective toxicokinetic modeling.


Assuntos
Modelos Biológicos , Compostos Orgânicos/farmacocinética , Toxicocinética , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , 1-Octanol , Animais , Calibragem , Cyprinidae , Disruptores Endócrinos , Feminino , Peixes , Brânquias/efeitos dos fármacos , Masculino , Compostos Orgânicos/toxicidade , Distribuição Tecidual
15.
Environ Sci Technol ; 48(7): 3649-57, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24579728

RESUMO

A bioanalytical approach was used to identify chemical contaminants at river sites located downstream from a pharmaceutical factory, where reproductive alterations in wild fish have been previously observed. By using polar organic compound integrative samplers (POCIS) at upstream and downstream sites, biological activity profiles based on in vitro bioassays revealed the occurrence of xenobiotic and steroid-like activities, including very high glucocorticoid, antimineralocorticoid, progestogenic and pregnane X receptor (PXR)-like activities (µg standard-EQ/g of sorbent range), and weak estrogenic activity (ng E2-EQ/g of sorbent range). Chemical analyses detected up to 60 out of 118 targeted steroid and pharmaceutical compounds in the extracts. In vitro profiling of occurring individual chemicals revealed the ability of several ones to act as agonist and/or antagonist of different steroids receptors. Mass balance calculation identified dexamethasone, spironolactone, and 6-alpha-methylprednisolone as major contributors to corticosteroid activities and levonorgestrel as the main contributor to progestogenic activities. Finally, RP-HPLC based fractionation of POCIS extracts and testing activity of fractions confirmed identified compounds and further revealed the presence of other unknown active chemicals. This study is one of the first to report environmental contamination by such chemicals; their possible contribution to in situ effects on fish at the same site is suggested.


Assuntos
Bioensaio/métodos , Monitoramento Ambiental/métodos , Preparações Farmacêuticas/análise , Rios/química , Esteroides/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Linhagem Celular , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , França , Sedimentos Geológicos/química , Humanos , Compostos Orgânicos/análise , Esteroides/toxicidade , Poluentes Químicos da Água/toxicidade
16.
Environ Int ; 189: 108728, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850672

RESUMO

Bisphenol A alternatives are manufactured as potentially less harmful substitutes of bisphenol A (BPA) that offer similar functionality. These alternatives are already in the market, entering the environment and thus raising ecological concerns. However, it can be expected that levels of BPA alternatives will dominate in the future, they are limited information on their environmental safety. The EU PARC project highlights BPA alternatives as priority chemicals and consolidates information on BPA alternatives, with a focus on environmental relevance and on the identification of the research gaps. The review highlighted aspects and future perspectives. In brief, an extension of environmental monitoring is crucial, extending it to cover BPA alternatives to track their levels and facilitate the timely implementation of mitigation measures. The biological activity has been studied for BPA alternatives, but in a non-systematic way and prioritized a limited number of chemicals. For several BPA alternatives, the data has already provided substantial evidence regarding their potential harm to the environment. We stress the importance of conducting more comprehensive assessments that go beyond the traditional reproductive studies and focus on overlooked relevant endpoints. Future research should also consider mixture effects, realistic environmental concentrations, and the long-term consequences on biota and ecosystems.


Assuntos
Compostos Benzidrílicos , Monitoramento Ambiental , Poluentes Ambientais , Fenóis , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Poluentes Ambientais/toxicidade , Monitoramento Ambiental/métodos , Animais , Humanos , Disruptores Endócrinos/toxicidade
17.
Environ Sci Pollut Res Int ; 30(3): 7640-7653, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36044144

RESUMO

The zebrafish eleutheroembryo model is increasingly used to assess the toxicity and developmental adverse effects of xenobiotics. However, the actual exposure is seldom measured (poorly accessible), while a predictive model could estimate these concentrations. The predictions with a new eleutheroembryo physiologically based pharmacokinetic (PBPK) model have been evaluated using datasets obtained from literature data for several bisphenols. The model simulated the toxicokinetics of bisphenols A (BPA), AF, F, and S through the eleutheroembryo tissues while considering the body and organ growth. We further improved the predictions by adding dynamic flows through the embryo and/or its chorion, impact of experimental temperature, metabolic clearance, and saturation of the absorption by Bayesian calibration. The model structure was determined using the BPA dataset and generalized to the other bisphenols. This model revealed the central role of the chorion in the compound uptake in the first 48 h post-fertilization. The predictions for the BPA substitutes estimated by our PBPK model were compared to available toxicokinetics data for zebrafish embryos, and 63% and 88% of them were within a twofold and fivefold error intervals of the corresponding experimental values, respectively. This model provides a tool to design new eleutheroembryo assays and evaluate the actual exposure.


Assuntos
Compostos Benzidrílicos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Teorema de Bayes , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Fenóis/toxicidade , Fenóis/metabolismo
18.
Environ Toxicol Pharmacol ; 102: 104221, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451529

RESUMO

Pathways underlying neurodevelopmental effects of endocrine disruptors (EDs) remain poorly known. Expression of brain aromatase (aroB), responsible for estrogen production in the brain of teleosts, is regulated by estrogenic EDs and could play a role in their behavioral effects. We exposed zebrafish eleutheroembryos (0-120 h post-fertilization) to various concentrations of 16 estrogenic chemicals (incl. bisphenols and contraceptives), and of 2 aroB inhibitors. Behavior was monitored using a photomotor response test procedure. Both aroB inhibitors (clotrimazole and prochloraz) and a total of 6 estrogenic EDs induced significant behavioral alterations, including DM-BPA, BPC and BPS-MPE, three bisphenol substitutes which behavioral effects were, to our knowledge, previously unknown. However, no consensus was reported on the effects among tested substances. It appears that behavioral changes could not be linked to groups of substances defined by their specificity or potency to modulate aroB expression, or by their structure. Altogether, behavioral effects of estrogenic EDs in 120 h post-fertilization larvae appear unrelated to aroB but are nonetheless not to be neglected in the context of environmental safety.


Assuntos
Disruptores Endócrinos , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Aromatase/metabolismo , Larva/metabolismo , Estrogênios/farmacologia , Encéfalo , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/metabolismo
19.
Toxicol In Vitro ; 89: 105588, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958675

RESUMO

The zebrafish eleutheroembryo (zfe) is widely used as a model to characterize the toxicity of chemicals. However, analytical methods are still missing to measure organ concentrations. Therefore, physiologically-based toxicokinetic (PBTK) modeling may overcome current limitations to help understand the relationship between toxic effects and internal exposure in various organs. A previous PBTK model has been updated to include the chorionic transport barrier and its permeabilization, hatching dynamics within a zfe population over development, and active mediated transport mechanisms. The zfe PBTK model has been calibrated using measured time-dependent internal concentrations of PFBA, PFHxS, PFOA, and PFOS in a zfe population and evaluated using external datasets from the literature. Calibration was successful with 96% of the predictions falling within a 2-fold range of the observed concentrations. The external dataset was correctly estimated with about 50% of the predictions falling within a factor of 3 of the observed data and 10% of the predictions are out of the 10-fold error. The calibrated model suggested that active mediated transport differs between PFAS with a sulfonic and carboxylic acid functional end groups. This PBTK model predicts well the fate of PFAS with various physicochemical properties in zfe. Therefore, this model may improve the use of zfe as an alternative model in toxicokinetic-toxicodynamic studies and help to refine and reduce zfe-based experiments, while giving insights into the internal kinetics of chemicals.


Assuntos
Fluorocarbonos , Peixe-Zebra , Animais , Bioacumulação , Cinética , Porosidade , Fluorocarbonos/toxicidade
20.
Toxicol In Vitro ; 88: 105554, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36641061

RESUMO

We report an interlaboratory evaluation of a recently developed androgen receptor (AR) transactivation assay using the UALH-hAR reporter cell line that stably expresses the luciferase gene under the transcriptional control of androgen receptor elements (AREs) with no glucocorticoid receptor (GR) crosstalk. Herein, a two-step prevalidation study involving three laboratories was conducted to assess performance criteria of the method such as transferability as well as robustness, sensitivity, and specificity. The first step consisted in the validation of the transfer of the cell line to participant laboratories through the testing of three reference chemicals: the AR agonist dihydrotestosterone, the AR antagonist hydroxyflutamide and the glucocorticoid dexamethasone. Secondly, a blinded study was conducted by screening a selection of ten chemicals, including four AR agonists, five AR antagonists, and one non-active chemical. All test compounds yielded the same activity profiles in all laboratories. The logEC50 (agonist assay) or logIC50 (antagonist assay) were in the same range, with intra-laboratory coefficients of variation (CVs) of 0.1-3.4% and interlaboratory CVs of 1-4%, indicating very good within- and between-laboratory reproducibility. Our results were consistent with literature and regulatory data (OECD TG458). Overall, this interlaboratory study demonstrated that the UALH-hAR assay is transferable, produces reliable, accurate and specific (anti)androgenic activity of chemicals, and can be considered for further regulatory validation.


Assuntos
Antagonistas de Androgênios , Antagonistas de Receptores de Andrógenos , Ativação Transcricional , Humanos , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios , Linhagem Celular , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Reprodutibilidade dos Testes , Avaliação Pré-Clínica de Medicamentos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa