Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 114: 118-130, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37595877

RESUMO

Poor knowledge about psychiatric disorders often results in similar diagnoses for patients with different symptoms, thus limiting the effectiveness of the available medications. As suggested by several lines of evidence, to improve these shortcomings, it is essential to identify biomarkers associated with specific symptoms and to stratify patients into more homogeneous populations taking a further step toward personalized medicine. Here, we aimed to associate specific behavioral phenotypes with specific molecular alterations by employing an animal model based on the pharmacological manipulation of the serotonergic system, which mimics a condition of vulnerability to develop psychiatric disorders. In particular, we treated female and male rats with fluoxetine (FLX 15 mg/kg dissolved in drinking water) during prenatal or early postnatal life, and we evaluated different pathological-like phenotypes (cognitive deficit, anhedonia, and anxiety) by exposing the rats to a battery of behavioral tests during adolescence and adulthood. In addition, we carried out molecular analyses on specific brain areas and in the blood. Our results showed that perinatal FLX administration determined age- and sex-dependent effects, with males being more sensitive to prenatal manipulation and manifesting anhedonic-like behavior and females to early postnatal exposure, exhibiting cognitive deficits and a less anxious phenotype. Furthermore, we identified, peripherally and centrally, biological functions altered by perinatal serotonin modulation regardless of the timing of exposure and sex, and other pathways specific for the pathological-like phenotypes. The results presented here provide new insights into potential biomarkers associated with specific behavioral phenotypes that may be useful for broadening knowledge about psychiatric conditions.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Inibidores Seletivos de Recaptação de Serotonina , Gravidez , Ratos , Masculino , Humanos , Animais , Feminino , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Fluoxetina , Encéfalo , Ansiedade/tratamento farmacológico , Biomarcadores , Cognição , Comportamento Animal
2.
Eur Arch Psychiatry Clin Neurosci ; 273(5): 1041-1050, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36018382

RESUMO

Stress is a major precipitating factor for psychiatric disorders and its effects may depend on its duration and intensity. Of note, there are differences in individual susceptibility to stress, with some subjects displaying vulnerability and others showing resistance. Furthermore, the ability to react to stressful-life events can alter the response to a subsequent new stressor. Hence, we investigated whether the vulnerability and resilience to the chronic mild stress (CMS) paradigm, in terms of the hedonic phenotype, are paralleled by a different response when facing a novel acute challenge. Specifically, rats submitted to CMS were stratified based on their sucrose intake into vulnerable (anhedonic rats showing reduce intake of sucrose) and resilient (rats not showing the anhedonic-like behavior) subgroups and then further exposed to an acute restraint stress (ARS). Then, neuronal activation was investigated by measuring the gene expression of early immediate (IEG) genes such as Arc and Cfos and early response (ERG) genes, such as Gadd45ß, Sgk1, Dusp1, and Nr4a1, in brain regions that play a crucial role in the stress response. We found that resilient rats preserve the ability to increase ERG expression following the ARS selectively in the ventral hippocampus. Conversely, such ability is lost in vulnerable rats. Interestingly, the recovery from the anhedonic phenotype observed in vulnerable rats after 3 weeks of rest from the CMS procedure also parallels the restoration of the ability to adequately respond to the challenge. In conclusion, these findings support the role of the ventral subregion of the hippocampus in the management of both chronic and acute stress response and point to this brain subregion as a critical target for a potential therapeutic strategy aimed at promoting stress resilience.


Assuntos
Anedonia , Hipocampo , Ratos , Animais , Anedonia/fisiologia , Ratos Wistar , Hipocampo/metabolismo , Encéfalo/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
3.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108481

RESUMO

Despite several antidepressant treatments being available in clinics, they are not effective in all patients. In recent years, N-acetylcysteine (NAC) has been explored as adjunctive therapy for many psychiatric disorders, including depression, for its antioxidant properties. Given the promising efficacy of this compound for the treatment of such pathologies, it is fundamental to investigate, at the preclinical level, the ability of the drug to act in the modulation of neuroplastic mechanisms in basal conditions and during challenging events in order to highlight the potential features of the drug useful for clinical efficacy. To this aim, adult male Wistar rats were treated with the antidepressant venlafaxine (VLX) (10 mg/kg) or NAC (300 mg/kg) for 21 days and then subjected to 1 h of acute restraint stress (ARS). We found that NAC enhanced the expression of several immediate early genes, markers of neuronal plasticity in the ventral and dorsal hippocampus, prefrontal cortex and amygdala, and in particular it mediated the acute-stress-induced upregulation of Nr4a1 expression more than VLX. These data suggested the ability of NAC to induce coping strategies to face external challenges, highlighting its potential for the improvement of neuroplastic mechanisms for the promotion of resilience, in particular via the modulation of Nr4a1.


Assuntos
Acetilcisteína , Genes Precoces , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Antidepressivos/uso terapêutico , Ratos Wistar , Cloridrato de Venlafaxina/farmacologia , Cloridrato de Venlafaxina/uso terapêutico
4.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674713

RESUMO

Patients affected by diabetes mellitus (DM) show diabetic encephalopathy with an increased risk of cognitive deficits, dementia and Alzheimer's disease, but the mechanisms are not fully explored. In the male animal models of DM, the development of cognitive impairment seems to be the result of the concomitance of different processes such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and aberrant synaptogenesis. However, even if diabetic encephalopathy shows some sex-dimorphic features, no observations in female rats have been so far reported on these aspects. Therefore, in an experimental model of type 1 DM (T1DM), we explored the impact of one month of pathology on memory abilities by the novel object recognition test and on neuroinflammation, synaptogenesis and mitochondrial functionality. Moreover, given that steroids are involved in memory and learning, we also analysed their levels and receptors. We reported that memory dysfunction can be associated with different features in the female hippocampus and cerebral cortex. Indeed, in the hippocampus, we observed aberrant synaptogenesis and neuroinflammation but not mitochondrial dysfunction and oxidative stress, possibly due to the results of locally increased levels of progesterone metabolites (i.e., dihydroprogesterone and allopregnanolone). These observations suggest specific brain-area effects of T1DM since different alterations are observed in the cerebral cortex.


Assuntos
Diabetes Mellitus Tipo 1 , Feminino , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Doenças Neuroinflamatórias , Aprendizagem em Labirinto , Encéfalo/metabolismo , Hipocampo/metabolismo , Estresse Oxidativo
5.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563331

RESUMO

Serotonin is synthetized through the action of tryptophan hydroxylase (TPH) enzymes. While the TPH2 isoform is responsible for the production of serotonin in the brain, TPH1 is expressed in peripheral organs. Interestingly, despite its peripheral localization, alterations of the gene coding for TPH1 have been related to stress sensitivity and an increased susceptibility for psychiatric pathologies. On these bases, we took advantage of newly generated TPH1-/- rats, and we evaluated the impact of the lack of peripheral serotonin on the behavior and expression of brain plasticity-related genes under basal conditions and in response to stress. At a behavioral level, TPH1-/- rats displayed reduced anxiety-like behavior. Moreover, we found that neuronal activation, quantified by the expression of Bdnf and the immediate early gene Arc and transcription of glucocorticoid responsive genes after 1 h of acute restraint stress, was blunted in TPH1-/- rats in comparison to TPH1+/+ animals. Overall, we provided evidence for the influence of peripheral serotonin levels in modulating brain functions under basal and dynamic situations.


Assuntos
Serotonina , Triptofano Hidroxilase , Animais , Ansiedade/genética , Ansiedade/metabolismo , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Ratos , Serotonina/genética , Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
6.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068707

RESUMO

BDNF plays a pivotal role in neuroplasticity events, vulnerability and resilience to stress-related disorders, being decreased in depressive patients and increased after antidepressant treatment. BDNF was found to be reduced in patients carrying the human polymorphism in the serotonin transporter promoter region (5-HTTLPR). The serotonin knockout rat (SERT-/-) is one of the animal models used to investigate the underlying molecular mechanisms of depression in humans. They present decreased BDNF levels, and anxiety- and depression-like behavior. To investigate whether upregulating BDNF would ameliorate the phenotype of SERT-/- rats, we overexpressed BDNF locally into the ventral hippocampus and submitted the animals to behavioral testing. The results showed that BDNF overexpression in the vHIP of SERT-/- rats promoted higher sucrose preference and sucrose intake; on the first day of the sucrose consumption test it decreased immobility time in the forced swim test and increased the time spent in the center of a novel environment. Furthermore, BDNF overexpression altered social behavior in SERT-/- rats, which presented increased passive contact with test partner and decreased solitary behavior. Finally, it promoted decrease in plasma corticosterone levels 60 min after restraint stress. In conclusion, modulation of BDNF IV levels in the vHIP of SERT-/- rats led to a positive behavioral outcome placing BDNF upregulation in the vHIP as a potential target to new therapeutic approaches to improve depressive symptoms.


Assuntos
Transtornos de Ansiedade/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Estresse Psicológico/tratamento farmacológico , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/patologia , Corticosterona/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Plasticidade Neuronal/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ratos , Serotonina/genética , Estresse Psicológico/genética , Estresse Psicológico/patologia
7.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201279

RESUMO

Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function. We focused on DNA methylation specifically in the proximity of the glucocorticoid responsive element (GRE) of the GR responsive genes Gadd45ß, Sgk1, and Gilz and on selected miRNA targeting these genes. Moreover, we assessed the role of the antipsychotic lurasidone in modulating these alterations. Chronic stress downregulated Gadd45ß and Gilz gene expression and lurasidone normalized the Gadd45ß modification. At the epigenetic level, CMS induced hypermethylation of the GRE of Gadd45ß gene, an effect prevented by lurasidone treatment. These stress-induced alterations were still present even after a period of rest from stress, indicating the enduring nature of such changes. However, the contribution of miRNA to the alterations in gene expression was moderate in our experimental conditions. Our results demonstrated that chronic stress mainly affects Gadd45ß expression and methylation, effects that are prolonged over time, suggesting that stress leads to changes in DNA methylation that last also after the cessation of stress procedure, and that lurasidone is a modifier of such mechanisms.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/metabolismo , Cloridrato de Lurasidona/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico , Animais , Antipsicóticos/farmacologia , Modelos Animais de Doenças , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , RNA Mensageiro , Ratos , Ratos Wistar , Receptores de Glucocorticoides/genética
8.
Cell Mol Neurobiol ; 40(6): 1037-1047, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31960229

RESUMO

Stress response involves several mechanisms and mediators that allow individuals to adapt to a changing environment. The effects of stress may be adaptive or maladaptive, based on the timing and intensity of exposure as well as on the individual vulnerability. In particular, exposure to mild and brief stressors provides beneficial advantages in a short-term period, by activating protective functions to react with the external demands. On these bases, the purpose of our study was to establish the time-dependent effects of acute stress exposure on neuroplastic mechanisms in adult male rats. Moreover, we aim at establishing the consequences of the acute challenge on memory processes by testing rats in the Novel Object Recognition (NOR) test. We found that acute restraint stress up-regulated total Bdnf expression 1 h post stress specifically in rat prefrontal cortex, an effect that was sustained by the increase of Bdnf isoform IV as well as by the pool of Bdnf transcripts with long 3'UTR. Furthermore, in the same brain region, the acute stress modulated in a time-specific manner the expression of different activity-dependent genes, namely Arc, Gadd45ß and Nr4a1. At behavioral level, the challenge was able to improve the performance in the NOR test specifically 1 h post stress, an effect that positively correlated with the expression of the neurotrophic factors. Taken together, our results suggest that a single session of acute stress enhances memory and learning functions with a specific temporal profile, by improving neuroplastic mechanisms within the prefrontal cortex.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Teste de Campo Aberto , Córtex Pré-Frontal/metabolismo , Estresse Fisiológico , Análise e Desempenho de Tarefas , Regiões 3' não Traduzidas/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Masculino , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/fisiopatologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo , Regulação para Cima/genética
9.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872446

RESUMO

Depression is a recurrent disorder, with about 50% of patients experiencing relapse. Exposure to stressful events may have an adverse impact on the long-term course of the disorder and may alter the response to a subsequent stressor. Indeed, not all the systems impaired by stress may normalize during symptoms remission, facilitating the relapse to the pathology. Hence, we investigated the long-lasting effects of chronic restraint stress (CRS) and its influence on the modifications induced by the exposure to a second hit on brain-derived neurotrophic factor (BDNF) signaling in the prefrontal cortex (PFC). We exposed adult male Sprague Dawley rats to 4 weeks of CRS, we left them undisturbed for the subsequent 3 weeks, and then we exposed animals to one hour of acute restraint stress (ARS). We found that CRS influenced the release of corticosterone induced by ARS and inhibited the ability of ARS to activate mature BDNF, its receptor Tropomyosin receptor kinase B (TRKB), and their associated intracellular cascades: the TRKB-PI3K-AKT), the MEK-MAPK/ERK, and the Phospholipase C γ (PLCγ) pathways, positively modulated by ARS in non-stressed animals. These results suggest that CRS induces protracted and detrimental consequences that interfere with the ability of PFC to cope with a challenging situation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Corticosterona/metabolismo , Córtex Pré-Frontal/metabolismo , Restrição Física/psicologia , Estresse Psicológico/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo , Transdução de Sinais , Estresse Psicológico/etiologia , Estresse Psicológico/genética
10.
Cell Mol Neurobiol ; 39(5): 715-720, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30915622

RESUMO

The serotoninergic system plays a key role in environmental sensitivity, potentially through down-stream effects on the GABAergic and glutamatergic systems. We previously demonstrated that juvenile serotonin transporter knockout (SERT-/-) rats, showing increased environmental sensitivity, exhibit a decreased GABA-mediated inhibitory tone in the cortex. Since the GABAergic and glutamatergic systems are tightly interconnected, we here analyzed glutamatergic markers in the prefrontal cortex of SERT-/- rats, from the early stages of life until adulthood. We found that SERT inactivation in pre-weaning, juvenile, and adult rats was associated with reduced expression of proteins essential for the glutamatergic synapses such as GluN1, PSD95, CDC42, and SEPT7. These lifelong molecular changes may destabilize glutamatergic signaling and possibly contribute to stress sensitivity and vulnerability to stress-related disorders associated with SERT alteration.


Assuntos
Glutamatos/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Biomarcadores/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Septinas/genética , Septinas/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
11.
Pharmacol Res ; 142: 14-21, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30735803

RESUMO

Vortioxetine is a novel multimodal antidepressant approved in 2013 by the Food and Drug Administration and the European Medicines Agency for the treatment of major depressive disorder (MDD). It combines the modulation of serotonin receptors activity with the inhibition of serotonin transporter (SERT). In this study, we aim at establishing the effect of chronic vortioxetine treatment (5 mg/kg twice/daily) in modulating neuroplastic mechanisms as well as hypothalamic pituitary adrenal axis (HPA) activity under basal condition and in response to an acute challenge. We found that prolonged vortioxetine administration significantly increased total Bdnf expression in the dorsal and ventral hippocampus of adult male rats and affected the stress-induced modulation of the immediate early genes Arc and Zif268, mainly in the ventral sub-region. Moreover, we also found that, within this brain area, chronic drug treatment was able to modulate glucocorticoid responsiveness at genomic level by enhancing the translocation of the glucocorticoid receptor (GR) in the nuclear compartment in response to the acute stress. Interestingly, this effect was mirrored by the up-regulation of different GR responsive-genes. Taken together, our data suggest that repeated exposure to vortioxetine specifically targets the ventral hippocampus by improving the ability to cope with stressful conditions. Moreover, its ability to facilitate HPA axis function might provide an indication to use this drug in patients characterized by glucocorticoid resistance.


Assuntos
Antidepressivos/farmacologia , Hipocampo/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo , Vortioxetina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Sprague-Dawley , Estresse Psicológico/tratamento farmacológico
12.
Addict Biol ; 23(1): 120-129, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27957784

RESUMO

d-Cycloserine (DCS), a partial NMDA receptor agonist, has been proposed as a cognitive enhancer to facilitate the extinction of drug-related memories. However, it is unknown whether there are individual differences in the efficacy of DCS. Here, we set out to investigate the influence of serotonin transporter (5-HTT) genotype on DCS treatment outcome and the underlying neural mechanism. To that end, we first determined the mRNA levels of several NMDA receptor subunits and observed a reduction in NR1/NR2C receptors in the ventromedial prefrontal cortex and nucleus accumbens of 5-HTT-/- compared with 5-HTT+/+ rats. Based on this finding, we hypothesized a lower sensitivity to DCS in the 5-HTT-/- rats. To test this, rats were trained in a cocaine-induced conditioned place preference (CPP) paradigm. A significant extinction of CPP was observed in 5-HTT+/+ rats receiving 1 mg/kg i.v. DCS, while a similar effect was found in the 5-HTT-/- rats only after 5 mg/kg. Following CPP, we tested if DCS were able to reduce FosB/∆FosB protein expression, a molecular switch for cocaine-seeking behaviour. We observed an overall lower number of FosB/∆FosB positive cells in 5-HTT-/- ventromedial prefrontal cortex and amygdala and an overall effect of DCS treatment on the number of positive cells in the nucleus accumbens. In conclusion, in this study, we show that the dosing of DCS to facilitate the extinction of cocaine-seeking behaviour is, at least partially, determined by 5-HTT genotype.


Assuntos
Cocaína/administração & dosagem , Ciclosserina/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Agonismo Parcial de Drogas , Técnicas de Inativação de Genes , Genótipo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Variantes Farmacogenômicos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministração
13.
Neural Plast ; 2017: 5965371, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29464125

RESUMO

The involvement of brain-derived neurotrophic factor (BDNF) in different central nervous system (CNS) diseases suggests that this neurotrophin may represent an interesting and reliable therapeutic target. Accordingly, the search for new compounds, also from natural sources, able to modulate BDNF has been increasingly explored. The present review considers the literature on the effects of botanicals on BDNF. Botanicals considered were Bacopa monnieri (L.) Pennell, Coffea arabica L., Crocus sativus L., Eleutherococcus senticosus Maxim., Camellia sinensis (L.) Kuntze (green tea), Ginkgo biloba L., Hypericum perforatum L., Olea europaea L. (olive oil), Panax ginseng C.A. Meyer, Rhodiola rosea L., Salvia miltiorrhiza Bunge, Vitis vinifera L., Withania somnifera (L.) Dunal, and Perilla frutescens (L.) Britton. The effect of the active principles responsible for the efficacy of the extracts is reviewed and discussed as well. The high number of articles published (more than one hundred manuscripts for 14 botanicals) supports the growing interest in the use of natural products as BDNF modulators. The studies reported strengthen the hypothesis that botanicals may be considered useful modulators of BDNF in CNS diseases, without high side effects. Further clinical studies are mandatory to confirm botanicals as preventive agents or as useful adjuvant to the pharmacological treatment.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Humanos , Neurônios/fisiologia
14.
ACS Chem Neurosci ; 15(7): 1560-1569, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507566

RESUMO

Any deviation from the programmed processes of brain development may modify its formation and functions, thereby precipitating pathological conditions, which often become manifest in adulthood. Exposure to a challenge during crucial periods of vulnerability, such as adolescence, may reveal molecular changes preceding behavioral outcomes. Based on a previous study showing that prenatal fluoxetine (FLX) leads to the development of an anhedonic-like behavior in adult rats, we aimed to assess whether the same treatment regimen (i.e., fluoxetine during gestation; 15 mg/kg/day) influences the ability to respond to acute restraint stress (ARS) during adolescence. We subjected the rats to a battery of behavioral tests evaluating the development of various phenotypes (cognitive deficit, anhedonia, and anxiety). Furthermore, we carried out molecular analyses in the plasma and prefrontal cortex, a brain region involved in stress response, and whose functions are commonly altered in neuropsychiatric conditions. Our findings confirm that prenatal manipulation did not affect behavior in adolescent rats but impaired the capability to respond properly to ARS. Indeed, we observed changes in several molecular key players of the hypothalamic pituitary adrenal axis, particularly influencing genomic effects mediated by the glucocorticoid receptor. This study highlights that prenatal FLX exposure influences the ability of adolescent male rats to respond to an acute challenge, thereby altering the functionality of the hypothalamic-pituitary-adrenal axis, and indicates that the prenatal manipulation may prime the response to challenging events during this critical period of life.


Assuntos
Fluoxetina , Efeitos Tardios da Exposição Pré-Natal , Feminino , Gravidez , Ratos , Animais , Masculino , Humanos , Fluoxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina , Sistema Hipotálamo-Hipofisário , Receptores de Glucocorticoides , Sistema Hipófise-Suprarrenal , Córtex Pré-Frontal , Estresse Psicológico , Corticosterona/farmacologia
15.
Neurosci Biobehav Rev ; 159: 105605, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417743

RESUMO

All individuals on planet earth are sensitive to the environment, but some more than others. These individual differences in sensitivity to environments are seen across many animal species including humans, and can influence personalities as well as vulnerability and resilience to mental disorders. Yet, little is known about the underlying brain mechanisms. Key genes that contribute to individual differences in environmental sensitivity are the serotonin transporter, dopamine D4 receptor and brain-derived neurotrophic factor genes. By synthesizing neurodevelopmental findings of these genetic factors, and discussing them through the lens of mechanisms related to sensitive periods, which are phases of heightened neuronal plasticity during which a certain network is being finetuned by experiences, we propose that these genetic factors delay but extend postnatal sensitive periods. This may explain why sensitive individuals show behavioral features that are characteristic of a young brain state at the level of sensory information processing, such as reduced filtering or blockade of irrelevant information, resulting in a sensory processing system that 'keeps all options open'.


Assuntos
Transtornos Mentais , Resiliência Psicológica , Humanos , Animais , Transtornos Mentais/genética , Encéfalo/fisiologia , Sensação
16.
J Affect Disord ; 350: 89-101, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220097

RESUMO

INTRODUCTION: Developmental changes due to early life variations in the serotonin system affect stress-related behavior and neuroplasticity in adulthood. These outcomes can be caused both by offspring's own and maternal serotonergic genotype. We aimed to dissociate the contribution of the own genotype from the influences of mother genotype. METHODS: Sixty-six male homozygous (5-HTT-/-) and heterozygous (5-HTT+/-) serotonin transporter knockout and wild-type rats from constant 5-HTT genotype mothers crossed with varying 5-HTT genotype fathers were subjected to tests assessing anxiety- and depression-like behaviors. Additionally, we measured plasma corticosterone levels and mRNA levels of BDNF, GABA system and HPA-axis components in the prelimbic and infralimbic cortex. Finally, we assessed the effect of paternal 5-HTT genotype on these measurements in 5-HTT+/- offspring receiving their knockout allele from their mother or father. RESULTS: 5-HTT-/- offspring exhibited increased anxiety- and depression-like behavior in the elevated plus maze and sucrose preference test. Furthermore, Bdnf isoform VI expression was reduced in the prelimbic cortex. Bdnf isoform IV and GABA related gene expression was also altered but did not survive false discovery rate (FDR) correction. Finally, 5-HTT+/- offspring from 5-HTT-/- fathers displayed higher levels of anxiety- and depression-like behavior and changes in GABA, BDNF and HPA-axis related gene expression not surviving FDR correction. LIMITATIONS: Only male offspring was tested. CONCLUSIONS: Offspring's own 5-HTT genotype influences stress-related behaviors and Bdnf isoform VI expression, independently of maternal 5-HTT genotype. Paternal 5-HTT genotype separately influenced these outcomes. These findings advance our understanding of the 5-HTT genotype dependent susceptibility to stress-related disorders.


Assuntos
Ansiedade , Depressão , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Masculino , Ratos , Ansiedade/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/genética , Ácido gama-Aminobutírico , Genótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
17.
Neuropsychopharmacology ; 48(10): 1475-1483, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37380799

RESUMO

Brain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.


Assuntos
Antidepressivos , Glucose , Ratos , Animais , Humanos , Cloridrato de Venlafaxina/farmacologia , Ratos Wistar , Glucose/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Anedonia/fisiologia , Hipocampo , Estresse Psicológico/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças
18.
Neuropharmacology ; 226: 109405, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572179

RESUMO

Sex steroid hormones are not only synthesized from the gonads but also by other tissues, such as the brain (i.e., neurosteroids) and colon (i.e., gut steroids). Gut microbiota can be shaped from sex steroid hormones synthesized from the gonads and locally interacts with gut steroids as in turn modulates neurosteroids. Type 1 diabetes mellitus (T1DM) is characterized by dysbiosis and also by diabetic encephalopathy. However, the interactions of players of gut-brain axis, such as gut steroids, gut permeability markers and microbiota, have been poorly explored in this pathology and, particularly in females. On this basis, we have explored, in streptozotocin (STZ)-induced adult female rats, whether one month of T1DM may alter (I) gut microbiome composition and diversity by 16S next-generation sequencing, (II) gut steroid levels by liquid chromatography-tandem mass spectrometry, (III) gut permeability markers by gene expression analysis, (IV) cognitive behavior by the novel object recognition (NOR) test and whether correlations among these aspects may occur. Results obtained reveal that T1DM alters gut ß-, but not α-diversity. The pathology is also associated with a decrease and an increase in colonic pregnenolone and allopregnanolone levels, respectively. Additionally, diabetes alters gut permeability and worsens cognitive behavior. Finally, we reported a significant correlation of pregnenolone with Blautia, claudin-1 and the NOR index and of allopregnanolone with Parasutterella, Gammaproteobacteria and claudin-1. Altogether, these results suggest new putative roles of these two gut steroids related to cognitive deficit and dysbiosis in T1DM female experimental model. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Neuroesteroides , Ratos , Feminino , Animais , Disbiose , Claudina-1 , Pregnanolona , Hormônios Esteroides Gonadais/metabolismo , Cognição , Permeabilidade , Pregnenolona
19.
Psychopharmacology (Berl) ; 239(8): 2547-2557, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35459959

RESUMO

RATIONALE: Although the occurrence of stressful events is very common during life, their impact may be different depending on the experience severity and duration. Specifically, acute challenges may trigger adaptive responses and even improve the individual's performance. However, such a physiological positive coping can only take place if the underlying molecular mechanisms are properly functioning. Indeed, if these systems are compromised by genetic factors or previous adverse conditions, the response set in motion by an acute challenge may be maladaptive and even cause the insurgence or the relapse of stress-related psychiatric disorders. OBJECTIVES: On these bases, we evaluated in the rat brain the role of the antioxidant component of the redox machinery on the acute stress responsiveness and its modulation by potential detrimental or beneficial events. METHODS: The expression of several antioxidant enzymes was assessed in different brain areas of adult male rats exposed to acute stress 3 weeks after a chronic immobilization paradigm with or without a concomitant treatment with the antipsychotic lurasidone. RESULTS: The acute challenge was able to trigger a marked antioxidant response that, despite the washout period, was impaired by the previous adverse experience and restored by lurasidone in an anatomical-specific manner. CONCLUSIONS: We found that a working antioxidant machinery takes part in acute stress response and may be differentially affected by other experiences. Given the essential role of stress responsiveness in almost every life process, the identification of the underlying mechanisms and their potential pharmacological modulation add further translational value to our data.


Assuntos
Antipsicóticos , Cloridrato de Lurasidona , Animais , Antioxidantes/farmacologia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Cloridrato de Lurasidona/farmacologia , Masculino , Ratos
20.
Front Behav Neurosci ; 16: 957702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386781

RESUMO

Stress-related mental disorders encompass a plethora of pathologies that share the exposure to a negative environment as trigger for their development. The vulnerability to the effects of a negative environment is not equal to all but differs between individuals based on the genetic background makeup. Here, to study the molecular mechanisms potentially underlying increased threat anticipation, we employed an animal model showing this symptom (5-HTT knockout rats) which we exposed to Pavlovian fear conditioning (FC). We investigated the role of mitochondria, taking advantage of the recent evidence showing that the dynamic of these organelles is dysregulated after stress exposure. Behavioral experiments revealed that, during the second day of extinction of the FC paradigm, 5-HTT knockout (5-HTT-/-) animals showed a lack of fear extinction recall. From a mechanistic standpoint, we carried out our molecular analyses on the amygdala and prefrontal cortex, given their role in the management of the fear response due to their tight connection. We demonstrated that mitochondrial dynamics are impaired in the amygdala and prefrontal cortex of 5-HTT-/- rats. The dissection of the potential contributing factors revealed a critical role in the mechanisms regulating fission and fusion that are dysregulated in transgenic animals. Furthermore, mitochondrial oxidative phosphorylation, mitochondrial biogenesis, and the production of antioxidant enzymes were altered in these brain regions in 5-HTT-/- rats. In summary, our data suggest that increased extracellular 5-HT levels cause an unbalance of mitochondrial functionality that could contribute to the reduced extinction recall of 5-HTT-/- rats, pointing out the role of mitochondrial dynamics in the etiology of psychiatric disorders. Our findings, also, provide some interesting insights into the targeted development of drugs to treat such disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa