Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trans Am Clin Climatol Assoc ; 134: 149-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135572

RESUMO

Early in the pandemic, clinicians recognized an overlap between Long COVID symptoms and dysautonomia, suggesting autonomic nervous system (ANS) dysfunction. Our clinical experience at Johns Hopkins with primary dysautonomia suggested heritability of sympathetic dysfunction, manifesting primarily as hyperhidrosis and as other dysautonomia symptoms. Whole exome sequencing revealed mutations in genes regulating electrical signaling in the nervous system, thus providing a genetic basis for the sympathetic overdrive observed. We hypothesize that dysautonomia in Long COVID requires two molecular hits: a genetic vulnerability to prime the ANS and a SARS-CoV-2 infection, as an immune trigger, to further disrupt ANS function resulting in increased sympathetic activity. Indeed, Long COVID patients show signs of chronic inflammation and autoimmunity. We have translated this two-hit concept to the clinic using ion channel inhibitors to target genetic susceptibility and immunomodulators to treat inflammation. This multi-hit hypothesis shows promise for managing Long COVID and merits further study.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/virologia , COVID-19/genética , SARS-CoV-2/imunologia , Transdução de Sinais , Predisposição Genética para Doença , Disautonomias Primárias/fisiopatologia , Disautonomias Primárias/imunologia , Inflamação/imunologia , Inflamação/fisiopatologia
2.
Front Med ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926248

RESUMO

Synthetic lethality is a novel model for cancer therapy. To understand the function and mechanism of BEN domain-containing protein 4 (BEND4) in pancreatic cancer, eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study. Methylation-specific polymerase chain reaction, CRISPR/Cas9, immunoprecipitation assay, comet assay, and xenograft mouse model were used. BEND4 is a new member of the BEN domain family. The expression of BEND4 is regulated by promoter region methylation. It is methylated in 58.1% (176/303) of pancreatic ductal adenocarcinoma (PDAC), 33.3% (14/42) of intraductal papillary mucinous neoplasm, 31.0% (13/42) of pancreatic neuroendocrine tumor, 14.3% (3/21) of mucinous cystic neoplasm, 4.3% (2/47) of solid pseudopapillary neoplasm, and 2.7% (1/37) of serous cystic neoplasm. BEND4 methylation is significantly associated with late-onset PDAC (> 50 years, P < 0.01) and tumor differentiation (P < 0.0001), and methylation of BEND4 is an independent poor prognostic marker (P < 0.01) in PDAC. Furthermore, BEND4 plays tumor-suppressive roles in vitro and in vivo. Mechanistically, BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair. Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor. Collectively, the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa