RESUMO
The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.
Assuntos
Secas , Eucalyptus , Folhas de Planta , Água , Microtomografia por Raio-X , XilemaRESUMO
Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.
Assuntos
Anemia , Gleiquênias , Desidratação , Dessecação , Fotossíntese , Folhas de Planta , ÁguaRESUMO
Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.
Assuntos
Árvores , Clima Tropical , Florestas , Hábitos , Folhas de PlantaRESUMO
The key role of cell walls in setting mesophyll conductance to CO2 (gm) and, consequently, photosynthesis is reviewed. First, the theoretical properties of cell walls that can affect gm are presented. Then, we focus on cell wall thickness (Tcw) reviewing empirical evidence showing that Tcw varies strongly among species and phylogenetic groups in a way that correlates with gm and photosynthesis; that is, the thicker the mesophyll cell walls, the lower the gm and photosynthesis. Potential interplays of gm, Tcw, dehydration tolerance, and hydraulic properties of leaves are also discussed. Dynamic variations of Tcw in response to the environment and their implications in the regulation of photosynthesis are discussed, and recent evidence suggesting an influence of cell wall composition on gm is presented. We then propose a hypothetical mechanism for the influence of cell walls on photosynthesis, combining the effects of thickness and composition, particularly pectins. Finally, we discuss the prospects for using biotechnology for enhancing photosynthesis by altering cell wall-related genes.
Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Parede Celular/metabolismo , Células do Mesofilo , Filogenia , Folhas de PlantaRESUMO
Hydraulic failure of the plant vascular system is a principal cause of forest die-off under drought. Accurate quantification of this process is essential to our understanding of the physiological mechanisms underpinning plant mortality. Imaging techniques increasingly are applied to estimate xylem cavitation resistance. These techniques allow for in situ measurement of embolism formation in real time, although the benefits and trade-offs associated with different techniques have not been evaluated in detail. Here we compare two imaging methods, microcomputed tomography (microCT) and optical vulnerability (OV), to standard hydraulic methods for measurement of cavitation resistance in seven woody species representing a diversity of major phylogenetic and xylem anatomical groups. Across the seven species, there was strong agreement between cavitation resistance values (P50 ) estimated from visualization techniques (microCT and OV) and between visual techniques and hydraulic techniques. The results indicate that visual techniques provide accurate estimates of cavitation resistance and the degree to which xylem hydraulic function is impacted by embolism. Results are discussed in the context of trade-offs associated with each technique and possible causes of discrepancy between estimates of cavitation resistance provided by visual and hydraulic techniques.
Assuntos
Água , Xilema , Secas , Filogenia , Madeira , Microtomografia por Raio-XRESUMO
Shifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Assuntos
Mudança Climática , Secas , Geografia , Estresse Fisiológico/fisiologia , Árvores/fisiologia , Biodiversidade , Ciclo do Carbono , Cycadopsida/fisiologia , Internacionalidade , Magnoliopsida/fisiologia , Pressão , Chuva , Temperatura , Árvores/classificação , Árvores/crescimento & desenvolvimento , Xilema/metabolismo , Xilema/fisiologiaRESUMO
BACKGROUND: While most water loss from leaf surfaces occurs via stomata, part of this loss also occurs through the leaf cuticle, even when the stomata are fully closed. This component, termed residual transpiration, dominates during the night and also becomes critical under stress conditions such as drought or salinity. Reducing residual transpiration might therefore be a potentially useful mechanism for improving plant performance when water availability is reduced (e.g. under saline or drought stress conditions). One way of reducing residual transpiration may be via increased accumulation of waxes on the surface of leaf. Residual transpiration and wax constituents may vary with leaf age and position as well as between genotypes. This study used barley genotypes contrasting in salinity stress tolerance to evaluate the contribution of residual transpiration to the overall salt tolerance, and also investigated what role cuticular waxes play in this process. Leaves of three different positions (old, intermediate and young) were used. RESULTS: Our results show that residual transpiration was higher in old leaves than the young flag leaves, correlated negatively with the osmolality, and was positively associated with the osmotic and leaf water potentials. Salt tolerant varieties transpired more water than the sensitive variety under normal growth conditions. Cuticular waxes on barley leaves were dominated by primary alcohols (84.7-86.9%) and also included aldehydes (8.90-10.1%), n-alkanes (1.31-1.77%), benzoate esters (0.44-0.52%), phytol related compounds (0.22-0.53%), fatty acid methyl esters (0.14-0.33%), ß-diketones (0.07-0.23%) and alkylresorcinols (1.65-3.58%). A significant negative correlation was found between residual transpiration and total wax content, and residual transpiration correlated significantly with the amount of primary alcohols. CONCLUSIONS: Both leaf osmolality and the amount of total cuticular wax are involved in controlling cuticular water loss from barley leaves under well irrigated conditions. A significant and negative relationship between the amount of primary alcohols and a residual transpiration implies that some cuticular wax constituents act as a water barrier on plant leaf surface and thus contribute to salinity stress tolerance. It is suggested that residual transpiration could be a fundamental mechanism by which plants optimize water use efficiency under stress conditions.
Assuntos
Hordeum/fisiologia , Transpiração Vegetal , Plantas Tolerantes a Sal/fisiologia , Hordeum/ultraestrutura , Concentração Osmolar , Epiderme Vegetal/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Estresse Fisiológico , Água , CerasRESUMO
The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2) < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2) < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem.
Assuntos
Cycadopsida/fisiologia , Magnoliopsida/fisiologia , Xilema/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Água/fisiologia , MadeiraRESUMO
Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.
Assuntos
Gleiquênias/fisiologia , Estômatos de Plantas/fisiologia , Vapor , Gleiquênias/anatomia & histologia , Modelos Biológicos , Fatores de TempoRESUMO
The processes by which the functions of interdependent tissues are coordinated as lineages diversify are poorly understood. Here, we examine evolutionary coordination of vascular, epidermal and cortical leaf tissues in the anatomically, ecologically and morphologically diverse woody plant family Proteaceae. We found that, across the phylogenetic range of Proteaceae, the sizes of guard, epidermal, palisade and xylem cells were positively correlated with each other but negatively associated with vein and stomatal densities. The link between venation and stomata resulted in a highly efficient match between potential maximum water loss (determined by stomatal conductance) and the leaf vascular system's capacity to replace that water. This important linkage is likely to be driven by stomatal size, because spatial limits in the packing of stomata onto the leaf surface apparently constrain the maximum size and density of stomata. We conclude that unified evolutionary changes in cell sizes of independent tissues, possibly mediated by changes in genome size, provide a means of substantially modifying leaf function while maintaining important functional links between leaf tissues. Our data also imply the presence of alternative evolutionary strategies involving cellular miniaturization during radiation into closed forest, and cell size increase in open habitats.
Assuntos
Tamanho Celular , Folhas de Planta/citologia , Evolução Biológica , Ecossistema , Modelos Biológicos , Filogenia , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/citologia , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/citologia , Proteaceae/citologia , Característica Quantitativa Herdável , Especificidade da EspécieRESUMO
Grasses such as bamboos can produce upright stems more than 30 m tall, yet the processes that constrain plant height in this important group have never been investigated. Air embolisms form commonly in the water transport system of grasses and we hypothesised that root pressure-dependent refilling these embolisms should limit the maximum height of grass species to the magnitude of their root pressure. Confirming this hypothesis, we show that in 59 species of bamboo grown in two common gardens, the maximum heights of culms of 67 clones are closely predicted by the maximum measured root pressure overnight. Furthermore, we demonstrate that water transport in these bamboo species is dependent on root pressure to repair hydraulic dysfunction sustained during normal diurnal gas exchange. Our results established the critical importance of root pressure in the tallest grass species and provide a new basis for understanding the limits for plant growth.
Assuntos
Bambusa/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Água/fisiologia , Ritmo Circadiano , Pressão Osmótica , Transpiração VegetalRESUMO
BACKGROUND AND AIMS: The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. METHODS: A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure-volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. KEY RESULTS: It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (D(h)) and higher mass-based photosynthetic rate (A(m)); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π(0)) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, A(m), and dry season π(0). Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, D(h), as well as dry season π(0). Both wood density and leaf density were closely correlated with leaf water-stress tolerance and A(m). CONCLUSIONS: The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.
Assuntos
Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Árvores , Ásia , Magnoliopsida/classificação , Filogenia , Folhas de Planta/classificação , Clima TropicalRESUMO
The ability of plants to maintain water flow through leaves under water stress-induced tension (assessed as the leaf hydraulic vulnerability; P50(leaf)) is intimately linked with survival. We examined the significance of P50(leaf) as an adaptive trait in influencing the dry-end distributional limits of cool temperate woody angiosperm species. We also examined differences in within-site variability in P50(leaf) between two high-rainfall montane rainforest sites in Tasmania and Peru, respectively. A significant relationship between P50(leaf) and the 5th percentile of mean annual rainfall across each species distribution was found in Tasmania, suggesting that P50(leaf) influences species climatic limits. Furthermore, a strong correlation between P50(leaf) and the minimum rainfall availability was found using five phylogenetically independent species pairs in wet and dry evergreen tree species, suggesting that rainfall is an important selective agent in the evolution of leaf hydraulic vulnerability. Greater within-site variability in P50(leaf) was found among dominant montane rainforest species in Tasmania than in Peru and this result is discussed within the context of differences in spatial and temporal environmental heterogeneity and parochial historical ecology.
Assuntos
Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Clima , Desidratação , Secas , Peru , Filogenia , Transpiração Vegetal , Chuva , Tasmânia , Temperatura , ÁrvoresAssuntos
Clima Desértico , Traqueófitas/fisiologia , Árvores/fisiologia , Austrália , Dessecação , ÁguaRESUMO
Plants from arid environments display covarying traits to survive or resist drought. Plant drought resistance and ability to survive long periods of low soil water availability should involve leaf phenology coordination with leaf and stem functional traits related to water status. This study tested correlations between phenology and functional traits involved in plant water status regulation in 10 Sonoran Desert tree species with contrasting phenology. Species seasonal variation in plant water status was defined by calculating their relative positions along the iso/anisohydric regulation continuum based on their hydroscape areas (HA)-a metric derived from the relationship between predawn and midday water potentials-and stomatal and hydraulic traits. Additionally, functional traits associated with plant water status regulation, including lamina vessel hydraulic diameter (DHL), stem-specific density (SSD) and leaf mass per area (LMA) were quantified per species. To characterize leaf phenology, leaf longevity (LL) and canopy foliage duration (FD) were determined. Hydroscape area was strongly correlated with FD but not with leaf longevity (LL); HA was significantly associated with SSD and leaf hydraulic traits (DHL, LMA) but not with stem hydraulic traits (vulnerability index, relative conductivity); and FD was strongly correlated with LMA and SSD. Leaf physiological characteristics affected leaf phenology when it was described as canopy FD better than when described as LL. Stem and leaf structure and hydraulic functions were not only relevant for categorizing species along the iso/anisohydric continuum but also allowed identifying different strategies of desert trees within the 'fast-slow' plant economics spectrum. The results in this study pinpoint the set of evolutionary pressures that shape the Sonoran Desert Scrub physiognomy.
Assuntos
Árvores , Água , Secas , Longevidade , Folhas de PlantaRESUMO
Angiosperm evolution transformed global ecology, and much of this impact derives from the unrivalled vegetative productivity of dominant angiosperm clades. However, the origins of high photosynthetic capacity in angiosperms remain unknown. In this study, we describe the steep trajectory of leaf vein density (D(v)) evolution in angiosperms, and predict that this leaf plumbing innovation enabled a major shift in the capacity of leaves to assimilate CO(2). Reconstructing leaf vein evolution from an examination of 504 angiosperm species we found a rapid three- to fourfold increase in D(v) occurred during the early evolution of angiosperms. We demonstrate how this major shift in leaf vein architecture potentially allowed the maximum photosynthetic capacity in angiosperms to rise above competing groups 140-100 Ma. Our data suggest that early terrestrial angiosperms produced leaves with low photosynthetic rates, but that subsequent angiosperm success is linked to a surge in photosynthetic capacity during their early diversification.
Assuntos
Evolução Biológica , Magnoliopsida/genética , Fotossíntese , Folhas de Planta/fisiologia , Atmosfera/química , Dióxido de Carbono/metabolismo , Magnoliopsida/metabolismo , Modelos BiológicosRESUMO
Hydraulic dysfunction in leaves determines key aspects of whole-plant responses to water stress; however, our understanding of the physiology of hydraulic dysfunction and its relationships to leaf structure and ecological strategy remains incomplete. Here, we studied a morphologically and ecologically diverse sample of angiosperms to test whether the water potential inducing a 50% loss in leaf hydraulic conductance (P50(leaf)) is predicted by properties of leaf xylem relating to water tension-induced conduit collapse. We also assessed the relationships between P50(leaf) and other traits considered to reflect drought resistance and ecological strategy. Across species, P50(leaf) was strongly correlated with a theoretical predictor of vulnerability to cell collapse in minor veins (the cubed ratio of the conduit wall thickness to the conduit lumen breadth). P50(leaf) was also correlated with mesophyll traits known to be related to drought resistance, but unrelated to traits associated with carbon economy. Our data indicate a link between the structural mechanics of leaf xylem and hydraulic function under water stress. Although it is possible that collapse may contribute directly to dysfunction, this relationship may also be a secondary product of vascular economics, suggesting that leaf xylem is dimensioned to avoid wall collapse.
Assuntos
Secas , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Feixe Vascular de Plantas/anatomia & histologia , Feixe Vascular de Plantas/fisiologia , Água/fisiologia , Madeira/fisiologia , Biomassa , Magnoliopsida/anatomia & histologia , Magnoliopsida/citologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Análise de Regressão , Estações do AnoRESUMO
⢠Motivated by the urgent need to understand how water stress-induced embolism limits the survival and recovery of plants during drought, the linkage between water-stress tolerance and xylem cavitation resistance was examined in one of the world's most drought resistant conifer genera, Callitris. ⢠Four species were subjected to drought treatments of -5, -8 and -10 MPa for a period of 3-4 wk, after which plants were rewatered. Transpiration, basal growth and leaf water potential were monitored during and after drought. ⢠Lethal water potential was correlated with the tension producing a 50% loss of stem hydraulic conductivity. The most resilient species suffered minimal embolism and recovered gas exchange within days of rewatering from -10 MPa, while the most sensitive species suffered major embolism and recovered very slowly. The rate of repair of water transport in the latter case was equal to the rate of basal area growth, indicating xylem reiteration as the primary means of hydraulic repair. ⢠The survival of, and recovery from, water stress in Callitris are accurately predicted by the physiology of the stem water-transport system. As the only apparent means of xylem repair after embolism, basal area growth is a critical part of this equation.