Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(48): 30619-30627, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184178

RESUMO

The initial production of inflammatory mediators dictates host defense as well as tissue injury. Inflammasome activation is a constituent of the inflammatory response by recognizing pathogen and host-derived products and eliciting the production of IL-1ß and IL-18 in addition to inducing a type of inflammatory cell death termed "pyroptosis." Leukotriene B4 (LTB4) is a lipid mediator produced quickly (seconds to minutes) by phagocytes and induces chemotaxis, increases cytokine/chemokine production, and enhances antimicrobial effector functions. Whether LTB4 directly activates the inflammasome remains to be determined. Our data show that endogenously produced LTB4 is required for the expression of pro-IL-1ß and enhances inflammasome assembly in vivo and in vitro. Furthermore, LTB4-mediated Bruton's tyrosine kinase (BTK) activation is required for inflammasome assembly in vivo as well for IL-1ß-enhanced skin host defense. Together, these data unveil a new role for LTB4 in enhancing the expression and assembly of inflammasome components and suggest that while blocking LTB4 actions could be a promising therapeutic strategy to prevent inflammasome-mediated diseases, exogenous LTB4 can be used as an adjuvant to boost inflammasome-dependent host defense.


Assuntos
Interações Hospedeiro-Patógeno , Inflamassomos/metabolismo , Leucotrieno B4/metabolismo , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Animais , Biópsia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Staphylococcus aureus Resistente à Meticilina , Camundongos , Pele/imunologia , Pele/microbiologia , Pele/patologia
2.
Med Vet Entomol ; 36(2): 176-184, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35089617

RESUMO

The study aimed to develop a multiplex qPCR to detect Leishmania infantum load in different sandfly sample settings using Leishmania kDNA and sandfly vacuolar ATPase (VATP) subunit C as internal control gene. The amplification of Lutzomyia longipalpis VATP gene was evaluated together with Leishmania infantum kDNA in a multiplex reaction. The concentration of VATP gene oligonucleotides was adjusted until no statistically significant difference was observed between all multiplex standard curves and singleplex curves, that is, only kDNA amplification. Limit of detection (LoD) was measured using a probit model and a cut-off defined by receiver operating characteristic analysis. Limit of quantification (LoQ) was assessed by a linear model using the coefficient of variation threshold of 25%. After assuring VATP gene amplification, its primer-probe concentrations were best at 100 nM/10 nM, respectively. The cut-off Cq value for L. infantum kDNA was defined as 35.46 with 100% of sensitivity and specificity. A total of 95% LoD was determined to be of 0.162 parasites while LoQ was 5.858. Our VATP/kDNA multiplex qPCR assay shows that it can be used to evaluate both DNA integrity and determine L. infantum load in L. longipalpis even for low yielded samples, that is, individual midguts.


Assuntos
Leishmania infantum , Phlebotomus , Psychodidae , Animais , DNA de Cinetoplasto/genética , Leishmania infantum/genética , Psychodidae/parasitologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária
3.
Proc Natl Acad Sci U S A ; 115(46): 11790-11795, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30373823

RESUMO

Blood-sucking phlebotomine sand flies (Diptera: Psychodidae) transmit leishmaniasis as well as arboviral diseases and bartonellosis. Sand fly females become infected with Leishmania parasites and transmit them while imbibing vertebrates' blood, required as a source of protein for maturation of eggs. In addition, both females and males consume plant-derived sugar meals as a source of energy. Plant meals may comprise sugary solutions such as nectar or honeydew (secreted by plant-sucking homopteran insects), as well as phloem sap that sand flies obtain by piercing leaves and stems with their needle-like mouthparts. Hence, the structure of plant communities can influence the distribution and epidemiology of leishmaniasis. We designed a next-generation sequencing (NGS)-based assay for determining the source of sand fly plant meals, based upon the chloroplast DNA gene ribulose bisphosphate carboxylase large chain (rbcL). Here, we report on the predilection of several sand fly species, vectors of leishmaniasis in different parts of the world, for feeding on Cannabis sativa We infer this preference based on the substantial percentage of sand flies that had fed on C. sativa plants despite the apparent "absence" of these plants from most of the field sites. We discuss the conceivable implications of the affinity of sand flies for C. sativa on their vectorial capacity for Leishmania and the putative exploitation of their attraction to C. sativa for the control of sand fly-borne diseases.


Assuntos
Herbivoria/fisiologia , Psychodidae/fisiologia , Animais , Comportamento Animal , Cannabis , Feminino , Insetos Vetores/parasitologia , Leishmania/genética , Leishmaniose/microbiologia , Masculino , Psychodidae/metabolismo , Psychodidae/parasitologia , Fatores Sexuais
4.
J Infect Dis ; 221(6): 973-982, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31748808

RESUMO

BACKGROUND: Skin lesions from patients infected with Leishmania braziliensis has been associated with inflammation induced by cytotoxic CD8+ T cells. In addition, CD8+ T cell-mediated cytotoxicity has not been linked to parasite killing. Meanwhile, the cytotoxic role played by natural killer (NK) cells in cutaneous leishmaniasis (CL) remains poorly understood. METHODS: In this study, we observed higher frequencies of NK cells in the peripheral blood of CL patients compared with healthy subjects, and that NK cells expressed more interferon-γ, tumor necrosis factor (TNF), granzyme B, and perforin than CD8+ T cells. RESULTS: We also found that most of the cytotoxic activity in CL lesions was triggered by NK cells, and that the high levels of granzyme B produced in CL lesions was associated with larger lesion size. Furthermore, an in vitro blockade of granzyme B was observed to decrease TNF production. CONCCLUSIONS: Our data, taken together, suggest an important role by NK cells in inducing inflammation in CL, thereby contributing to disease immunopathology.


Assuntos
Regulação Enzimológica da Expressão Gênica/imunologia , Granzimas/metabolismo , Inflamação/metabolismo , Células Matadoras Naturais/enzimologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Linfócitos T CD4-Positivos , Estudos de Casos e Controles , Granzimas/genética , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Perforina/genética , Perforina/metabolismo , Linfócitos T Citotóxicos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
J Immunol ; 196(4): 1865-73, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26800873

RESUMO

Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.


Assuntos
Leishmaniose Cutânea/imunologia , Leucotrieno B4/biossíntese , Macrófagos/imunologia , Macrófagos/parasitologia , Neutrófilos/imunologia , Degranulação Celular/imunologia , Linhagem Celular , Técnicas de Cocultura , Fibronectinas/imunologia , Humanos , Leishmania , Leishmania mexicana , Leucotrieno B4/imunologia , Microscopia Eletrônica de Transmissão , Ativação de Neutrófilo/imunologia
6.
J Infect Dis ; 210(4): 656-66, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24634497

RESUMO

Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis-induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).


Assuntos
Leishmania mexicana/metabolismo , Leishmaniose Cutânea/metabolismo , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Antígenos de Superfície/metabolismo , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores do Leucotrieno B4/metabolismo , Receptor 2 Toll-Like/metabolismo
7.
J Immunol ; 188(9): 4460-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22461696

RESUMO

Visceral leishmaniasis (VL) remains a major public health problem worldwide. This disease is highly associated with chronic inflammation and a lack of the cellular immune responses against Leishmania. It is important to identify major factors driving the successful establishment of the Leishmania infection to develop better tools for the disease control. Heme oxygenase-1 (HO-1) is a key enzyme triggered by cellular stress, and its role in VL has not been investigated. In this study, we evaluated the role of HO-1 in the infection by Leishmania infantum chagasi, the causative agent of VL cases in Brazil. We found that L. chagasi infection or lipophosphoglycan isolated from promastigotes triggered HO-1 production by murine macrophages. Interestingly, cobalt protoporphyrin IX, an HO-1 inductor, increased the parasite burden in both mouse and human-derived macrophages. Upon L. chagasi infection, macrophages from Hmox1 knockout mice presented significantly lower parasite loads when compared with those from wild-type mice. Furthermore, upregulation of HO-1 by cobalt protoporphyrin IX diminished the production of TNF-α and reactive oxygen species by infected murine macrophages and increased Cu/Zn superoxide dismutase expression in human monocytes. Finally, patients with VL presented higher systemic concentrations of HO-1 than healthy individuals, and this increase of HO-1 was reduced after antileishmanial treatment, suggesting that HO-1 is associated with disease susceptibility. Our data argue that HO-1 has a critical role in the L. chagasi infection and is strongly associated with the inflammatory imbalance during VL. Manipulation of HO-1 pathways during VL could serve as an adjunctive therapeutic approach.


Assuntos
Regulação Enzimológica da Expressão Gênica/imunologia , Heme Oxigenase-1/imunologia , Leishmania/imunologia , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/imunologia , Proteínas de Membrana/imunologia , Animais , Brasil , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Glicoesfingolipídeos/imunologia , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/farmacologia , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/genética , Humanos , Leishmania/metabolismo , Leishmaniose Visceral/enzimologia , Leishmaniose Visceral/genética , Leishmaniose Visceral/patologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/patologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/imunologia
8.
Acta Trop ; 257: 107303, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950763

RESUMO

Sand flies are vectors of great public health importance, since they constitute a group of hematophagous insects responsible for etiological agents transmission of zoonotic diseases such a visceral leishmaniasis. In face of the expansion of these diseases, efficient control strategies are needed which depend on comprehending the sand fly eco-epidemiology. In this regard, MALDI-TOF mass spectrometry has been used for bacteria, fungi and yeast detection studies through peptide/protein profiles. However, little is known about interference of biological factors associated with vector ecology, such as blood meal preferences and even sand fly age on the peptide/protein profiles. Thus, the present study aimed to evaluate the differences in peptide/protein profiles of the sand fly Lutzomyia longipalpis, by means of MALDI-TOF, due to the sand fly's age, sex, blood meal source and Leishmania infantum infection. Sample preparation was made removing both head and last abdomen segments keeping the thorax, its appendices and the rest of the abdomen. Five specimens per pool were used to obtain peptide/protein extract of which 1 µL solution was deposited over 1 µL MALDI matrix dried. Characteristic spectra were analyzed using principal coordinate analysis as well as indicator species analysis to discriminate differences in sand flies's peptide/protein profile by sex, age, blood meal source and L. infantum infection. The results show that the evaluated variables produced distinct peptide/protein profiles, demonstrated by the identification of specific diagnostic ions. It was found that the interference of biological factors should be taken into account when using the MALDI-TOF analysis of sand fly species identification and eco-epidemiological applications in field studies. Based on our results, we believe that it is possible to identify infected specimens and the source of blood meal in a collection of wild sand flies, serving to measure infectivity and understand the dynamics of the vector's transmission chain. Our results may be useful for epidemiological studies that look at the ecology of sand flies and leishmaniasis, as well as for raising awareness of biological characteristics' impact on peptide/protein profiles in sand fly species identification.


Assuntos
Psychodidae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Psychodidae/parasitologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Feminino , Masculino , Peptídeos/análise , Proteínas de Insetos/análise , Insetos Vetores/parasitologia , Leishmania infantum/isolamento & purificação , Leishmaniose Visceral/transmissão
9.
ACS Infect Dis ; 10(10): 3544-3552, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39313410

RESUMO

Lipophosphoglycan (LPG) is an important Leishmania virulence factor. It is the most abundant surface glycoconjugate in promastigotes, playing an important role in the interaction with phagocytic cells. While LPG is known to modulate the macrophage immune response during infection, the activation mechanisms triggered by this glycoconjugate have not been fully elucidated. This work investigated the role that LPGs purified from two strains of Leishmania major (FV1 and LV39) play in macrophage activation, considering the differences in their biochemical structures. Bone marrow-derived macrophages from BALB/c mice were stimulated with 10 µg/mL purified LPG from the LV39 and FV1 strains. We then measured the production of nitric oxide (NO) and cytokines, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the activation of MAPK pathways. LPG from the LV39 strain, which has longer poly-galactosylated side chains, induced a more pro-inflammatory profile than that from the FV1 strain. This included higher production of NO, TNF-α, and PGE2, and increased expression of COX-2 and iNOS. Additionally, the phosphorylation of ERK-1/2 and JNK was elevated in macrophages exposed to LPG from the LV39 strain. No difference in IL-10 production was observed in cells stimulated by both LPG. Thus, intraspecific structural differences in LPG contribute to distinct innate immune responses in macrophages.


Assuntos
Glicoesfingolipídeos , Leishmania major , Ativação de Macrófagos , Macrófagos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Animais , Leishmania major/imunologia , Glicoesfingolipídeos/química , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Citocinas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Feminino
10.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931434

RESUMO

In the New World, dogs are considered the main reservoir of visceral leishmaniasis (VL). Due to inefficacies in existing treatments and the lack of an efficient vaccine, dog culling is one of the main strategies used to control disease, making the development of new therapeutic interventions mandatory. We previously showed that Tanespimycin (17-AAG), a Hsp90 inhibitor, demonstrated potential for use in leishmaniasis treatment. The present study aimed to test the safety of 17-AAG in dogs by evaluating plasma pharmacokinetics, dose-proportionality, and the tolerability of 17-AAG in response to a dose-escalation protocol and multiple administrations at a single dose in healthy dogs. Two protocols were used: Study A: four dogs received variable intravenous (IV) doses (50, 100, 150, 200, or 250 mg/m2) of 17-AAG or a placebo (n = 4/dose level), using a cross-over design with a 7-day "wash-out" period; Study B: nine dogs received three IV doses of 150 mg/m2 of 17-AAG administered at 48 h intervals. 17-AAG concentrations were determined by a validated high-performance liquid chromatographic (HPLC) method: linearity (R2 = 0.9964), intra-day precision with a coefficient of variation (CV) ≤ 8%, inter-day precision (CV ≤ 20%), and detection and quantification limits of 12.5 and 25 ng/mL, respectively. In Study A, 17-AAG was generally well tolerated. However, increased levels of liver enzymes-alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT)-and bloody diarrhea were observed in all four dogs receiving the highest dosage of 250 mg/m2. After single doses of 17-AAG (50-250 mg/m2), maximum plasma concentrations (Cmax) ranged between 1405 ± 686 and 9439 ± 991 ng/mL, and the area under the curve (AUC) plotting plasma concentration against time ranged between 1483 ± 694 and 11,902 ± 1962 AUC 0-8 h µg/mL × h, respectively. Cmax and AUC parameters were dose-proportionate between the 50 and 200 mg/m2 doses. Regarding Study B, 17-AAG was found to be well tolerated at multiple doses of 150 mg/m2. Increased levels of liver enzymes-ALT (28.57 ± 4.29 to 173.33 ± 49.56 U/L), AST (27.85 ± 3.80 to 248.20 ± 85.80 U/L), and GGT (1.60 ± 0.06 to 12.70 ± 0.50 U/L)-and bloody diarrhea were observed in only 3/9 of these dogs. After the administration of multiple doses, Cmax and AUC 0-48 h were 5254 ± 2784 µg/mL and 6850 ± 469 µg/mL × h in plasma and 736 ± 294 µg/mL and 7382 ± 1357 µg/mL × h in tissue transudate, respectively. In conclusion, our results demonstrate the potential of 17-AAG in the treatment of CVL, using a regimen of three doses at 150 mg/m2, since it presents the maintenance of high concentrations in subcutaneous interstitial fluid, low toxicity, and reversible hepatotoxicity.

11.
Pathogens ; 13(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39204231

RESUMO

BACKGROUND: Leishmaniasis is a significant global public health issue that is caused by parasites from Leishmania genus. With limited treatment options and rising drug resistance, there is a pressing need for new therapeutic approaches. Molecular chaperones, particularly Hsp90, play a crucial role in parasite biology and are emerging as promising targets for drug development. OBJECTIVE: This study evaluates the efficacy of 17-DMAG in treating BALB/c mice from cutaneous leishmaniasis through in vitro and in vivo approaches. MATERIALS AND METHODS: We assessed 17-DMAG's cytotoxic effect on bone marrow-derived macrophages (BMMΦ) and its effects against L. braziliensis promastigotes and intracellular amastigotes. Additionally, we tested the compound's efficacy in BALB/c mice infected with L. braziliensis via intraperitoneal administration to evaluate the reduction in lesion size and the decrease in parasite load in the ears and lymph nodes of infected animals. RESULTS: 17-DMAG showed selective toxicity [selective index = 432) towards Leishmania amastigotes, causing minimal damage to host cells. The treatment significantly reduced lesion sizes in mice and resulted in parasite clearance from ears and lymph nodes. It also diminished inflammatory responses and reduced the release of pro-inflammatory cytokines (IL-6, IFN-γ, TNF) and the regulatory cytokine IL-10, underscoring its dual leishmanicidal and anti-inflammatory properties. CONCLUSIONS: Our findings confirm the potential of 17-DMAG as a viable treatment for cutaneous leishmaniasis and support further research into its mechanisms and potential applications against other infectious diseases.

12.
BMC Microbiol ; 13: 102, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23656976

RESUMO

BACKGROUND: Leishmania parasites are transmitted to their vertebrate hosts by infected Phlebotomine sand flies during the blood meal of the flies. Sand fly saliva is known to enhance Leishmania spp. infection, while pre-exposure to saliva protects mice against parasitic infections. In this study, we investigated the initial inflammatory leucocyte composition induced by one or three inocula of salivary gland extract (SGE) from Lutzomyia longipalpis in the presence or absence of Leishmania braziliensis. RESULTS: We demonstrated that inoculating SGE once (SGE-1X) or three times (SGE-3X), which represented a co-inoculation or a pre-exposure to saliva, respectively, resulted in different cellular infiltrate profiles. Whereas SGE-1X led to the recruitment of all leucocytes subtypes including CD4(+) T cells, CD4(+)CD25(+) T cells, dendritic cells, macrophages and neutrophils, the immune cell profile in the SGE-3X group differed dramatically, as CD4(+) T cells, CD4(+)CD25(+) T cells, dendritic cells, macrophages and neutrophils were decreased and CD8(+) T cells were increased. The SGE-1X group did not show differences in the ear lesion size; however, the SGE-1X group harbored a higher number of parasites. On the other hand, the SGE-3X group demonstrated a protective effect against parasitic disease, as the parasite burden was lower even in the earlier stages of the infection, a period in which the SGE-1X group presented with larger and more severe lesions. These effects were also reflected in the cytokine profiles of both groups. Whereas the SGE-1X group presented with a substantial increase in IL-10 production, the SGE-3X group showed an increase in IFN-γ production in the draining lymph nodes. Analysis of the inflammatory cell populations present within the ear lesions, the SGE-1X group showed an increase in CD4(+)FOXP3(+) cells, whereas the CD4(+)FOXP3(+) population was reduced in the SGE-3X group. Moreover, CD4(+) T cells and CD8(+) T cells producing IFN-γ were highly detected in the ears of the SGE-3X mice prior to infection. In addition, upon treatment of SGE-3X mice with anti-IFN-γ monoclonal antibody, we observed a decrease in the protective effect of SGE-3X against L. braziliensis infection. CONCLUSIONS: These results indicate that different inocula of Lutzomyia longipalpis salivary gland extract can markedly modify the cellular immune response, which is reflected in the pattern of susceptibility or resistance to Leishmania braziliensis infection.


Assuntos
Orelha/patologia , Orelha/parasitologia , Mordeduras e Picadas de Insetos , Leishmania braziliensis/patogenicidade , Leucócitos/imunologia , Leucócitos/parasitologia , Psychodidae/parasitologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Saliva/imunologia , Saliva/parasitologia
13.
Nanomedicine ; 9(7): 985-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23603355

RESUMO

We recently demonstrated that immunization with polyester poly(lactide-co-glycolide acid) (PLGA) nanoparticles loaded with the 11-kDa Leishmania vaccine candidate kinetoplastid membrane protein 11 (KMP-11) significantly reduced parasite load in vivo. Presently, we explored the ability of the recombinant PLGA nanoparticles to stimulate innate responses in macrophages and the outcome of infection with Leishmania braziliensis in vitro. Incubation of macrophages with KMP-11-loaded PLGA nanoparticles significantly decreased parasite load. In parallel, we observed the augmented production of nitric oxide, superoxide, TNF-α and IL-6. An increased release of CCL2/MCP-1 and CXCL1/KC was also observed, resulting in macrophage and neutrophil recruitment in vitro. Lastly, the incubation of macrophages with KMP-11-loaded PLGA nanoparticles triggered the activation of caspase-1 and the secretion of IL-1ß and IL-18, suggesting inflammasome participation. Inhibition of caspase-1 significantly increased the parasite load. We conclude that KMP-11-loaded PLGA nanoparticles promote the killing of intracellular Leishmania parasites through the induction of potent innate responses. FROM THE CLINICAL EDITOR: In this novel study, KMP-11-loaded PLGA nanoparticles are demonstrated to promote the killing of intracellular Leishmania parasites through enhanced innate immune responses by multiple mechanisms. Future clinical applications would have a major effect on our efforts to address parasitic infections.


Assuntos
Imunidade Inata/imunologia , Ácido Láctico/química , Leishmania/citologia , Leishmania/imunologia , Nanopartículas/química , Ácido Poliglicólico/química , Proteínas de Protozoários/imunologia , Animais , Morte Celular/efeitos dos fármacos , Quimiocinas/metabolismo , DNA/metabolismo , Feminino , Imunidade Inata/efeitos dos fármacos , Inflamassomos/metabolismo , Ácido Láctico/farmacologia , Leishmania/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/biossíntese , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Superóxidos/metabolismo
14.
Microorganisms ; 11(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37630497

RESUMO

Skin ulcers of cutaneous leishmaniasis (CL) are characterized by a localized inflammatory response mediated by innate and adaptive immune cells, including dendritic cells (DC) and natural killer (NK) cells. Bidirectional interactions between DCs and NK cells contribute to tailor leishmaniasis outcome. Despite advances in the Leishmania biology field in recent decades, the mechanisms involved in DC/NK-mediated control of Leishmania sp. pathogenesis as well as the cellular and molecular players involved in such interaction remain unclear. The present study sought to investigate canonical pathways associated with CL arising from Leishmania braziliensis infection. Initially, two publicly available microarray datasets of skin biopsies from active CL lesions were analyzed, and five pathways were identified using differentially expressed genes. The "Crosstalk between DCs and NK cells" pathway was notable due to a high number of modulated genes. The molecules significantly involved in this pathway were identified, and our findings were validated in newly obtained CL biopsies. We found increased expression of TLR4, TNFRSF1B, IL-15, IL-6, CD40, CCR7, TNF and IFNG, confirming the analysis of publicly available datasets. These findings reveal the "crosstalk between DCs and NK cells" as a potential pathway to be further explored in the pathogenesis of CL, especially the expression of CCR7, which is correlated with lesion development.

15.
Front Cell Infect Microbiol ; 13: 1261074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860064

RESUMO

Leishmaniasis is a widespread group of infectious diseases that significantly impact global health. Despite high prevalence, leishmaniasis often receives inadequate attention in the prioritization of measures targeting tropical diseases. The causative agents of leishmaniasis are protozoan parasites of the Leishmania genus, which give rise to a diverse range of clinical manifestations, including cutaneous and visceral forms. Visceral leishmaniasis (VL), the most severe form, can be life-threatening if left untreated. Parasites can spread systemically within the body, infecting a range of organs, such as the liver, spleen, bone marrow and lymph nodes. Natural reservoirs for these protozoa include rodents, dogs, foxes, jackals, and wolves, with dogs serving as the primary urban reservoir for Leishmania infantum. Dogs exhibit clinical and pathological similarities to human VL and are valuable models for studying disease progression. Both human and canine VL provoke clinical symptoms, such as organ enlargement, fever, weight loss and abnormal gamma globulin levels. Hematologic abnormalities have also been observed, including anemia, leukopenia with lymphocytosis, neutropenia, and thrombocytopenia. Studies in dogs have linked these hematologic changes in peripheral blood to alterations in the bone marrow. Mouse models of VL have also contributed significantly to our understanding of the mechanisms underlying these hematologic and bone marrow abnormalities. This review consolidates information on hematological and immunological changes in the bone marrow of humans, dogs, and mice infected with Leishmania species causing VL. It includes findings on the role of bone marrow as a source of parasite persistence in internal organs and VL development. Highlighting gaps in current knowledge, the review emphasizes the need for future research to enhance our understanding of VL and identify potential targets for novel diagnostic and therapeutic approaches.


Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Animais , Cães , Humanos , Camundongos , Leishmaniose Visceral/veterinária , Leishmaniose Visceral/diagnóstico , Medula Óssea/parasitologia , Medula Óssea/patologia , Leishmaniose/patologia , Pele/patologia , Doenças do Cão/epidemiologia
16.
Front Cell Dev Biol ; 11: 1206049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576604

RESUMO

Background: Leishmaniasis results in a wide spectrum of clinical manifestations, ranging from skin lesions at the site of infection to disseminated lesions in internal organs, such as the spleen and liver. While the ability of Leishmania-infected host cells to migrate may be important to lesion distribution and parasite dissemination, the underlying mechanisms and the accompanying role of host cells remain poorly understood. Previously published work has shown that Leishmania infection inhibits macrophage migration in a 2-dimensional (2D) environment by altering actin dynamics and impairing the expression of proteins involved in plasma membrane-extracellular matrix interactions. Although it was shown that L. infantum induces the 2D migration of dendritic cells, in vivo cell migration primarily occurs in 3-dimensional (3D) environments. The present study aimed to investigate the migration of macrophages and dendritic cells infected by Leishmania using a 3-dimensional environment, as well as shed light on the mechanisms involved in this process. Methods: Following the infection of murine bone marrow-derived macrophages (BMDM), human macrophages and human dendritic cells by L. amazonensis, L. braziliensis, or L. infantum, cellular migration, the formation of adhesion complexes and actin polymerization were evaluated. Results: Our results indicate that Leishmania infection inhibited 3D migration in both BMDM and human macrophages. Reduced expression of proteins involved in adhesion complex formation and alterations in actin dynamics were also observed in Leishmania-infected macrophages. By contrast, increased human dendritic cell migration in a 3D environment was found to be associated with enhanced adhesion complex formation and increased actin dynamics. Conclusion: Taken together, our results show that Leishmania infection inhibits macrophage 3D migration, while enhancing dendritic 3D migration by altering actin dynamics and the expression of proteins involved in plasma membrane extracellular matrix interactions, suggesting a potential association between dendritic cells and disease visceralization.

17.
Immunol Lett ; 260: 73-80, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315848

RESUMO

Shrimp is among the most sensitizing food allergens and has been associated with many anaphylaxis reactions. However, there is still a shortage of studies that enable a systematic understanding of this disease and the investigation of new therapeutic approaches. This study aimed to develop a new experimental model of shrimp allergy that could enable the evaluation of new prophylactic treatments. BALB/c mice were subcutaneously sensitized with 100 µg of shrimp proteins of Litopenaeus vannamei adsorbed in 1 mg of aluminum hydroxide on day 0, and a booster (100 µg of shrimp proteins only) on day 14. The oral challenge protocol was based on the addition of 5 mg/ml of shrimp proteins to water from day 21 to day 35. Analysis of shrimp extract content detected at least 4 of the major allergens reported to L. vannamei. In response to the sensitization, allergic mice showed significantly enhanced IL-4 and IL-10 production in restimulated cervical draining lymph node cells. High detection of serum anti-shrimp IgE and IgG1 suggested the development of allergies to shrimp while Passive Cutaneous Anaphylaxis assay revealed an IgE-mediated response. Immunoblotting analysis revealed that Allergic mice developed antibodies to multiple antigens present in the shrimp extract. These observations were supported by the detection of anti-shrimp IgA production in intestinal lavage samples and morphometric intestinal mucosal changes. Therefore, this experimental protocol can be a tool to evaluate prophylactic and therapeutic approaches.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Animais , Camundongos , Imunoglobulina E , Alérgenos , Extratos Vegetais
18.
J Vis Exp ; (182)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467651

RESUMO

Leishmaniasis comprises a collection of clinical manifestations associated with the infection of obligate intracellular protozoans, Leishmania. The life cycle of Leishmania parasites consists of two alternating life stages (amastigotes and promastigotes), during which parasites reside within either arthropod vectors or vertebrate hosts, respectively. Notably, the complex interactions between Leishmania parasites and several cells of the immune system largely influence the outcome of infection. Importantly, although macrophages are known to be the main host niche for Leishmania replication, parasites are also phagocytosed by other innate immune cells, such as neutrophils and dendritic cells (DCs). DCs play a major role in bridging the innate and adaptive branches of immunity and thus orchestrate immune responses against a wide range of pathogens. The mechanisms by which Leishmania and DCs interact remain unclear and involve aspects of pathogen capture, the dynamics of DC maturation and activation, DC migration to draining lymph node (dLNs), and antigen presentation to T cells. Although a large body of studies support the notion that DCs play a dual role in modulating immune responses against Leishmania, the participation of these cells in susceptibility or resistance to Leishmania remains poorly understood. After infection, DCs undergo a maturation process associated with the upregulation of surface major histocompatibility complex (MHC) II, in addition to costimulatory molecules (namely, CD40, CD80, and CD86). Understanding the role of DCs in infection outcome is crucial to developing therapeutic and prophylactic strategies to modulate the immune response against Leishmania. This paper describes a method for the characterization of Leishmania-DC interaction. This detailed protocol provides guidance throughout the steps of DC differentiation, the characterization of cell surface molecules, and infection protocols, allowing scientists to investigate DC response to Leishmania infection and gain insight into the roles played by these cells in the course of infection.


Assuntos
Leishmania , Leishmaniose , Parasitos , Animais , Diferenciação Celular , Células Dendríticas , Humanos , Leishmaniose/parasitologia , Fagocitose
19.
Front Cardiovasc Med ; 9: 787423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187122

RESUMO

Chronic Chagas cardiomyopathy (CCC) is one of the deadliest cardiomyopathies known and the most severe manifestation of Chagas disease, which is caused by infection with the parasite Trypanosoma cruzi. Idiopathic dilated cardiomyopathies (IDC) are a diverse group of inflammatory heart diseases that affect the myocardium and are clinically similar to CCC, often causing heart failure and death. While T-cells are critical for mediating cardiac pathology in CCC and IDC, the mechanisms underlying T-cell function in these cardiomyopathies are not well-defined. In this study, we sought to investigate the phenotypic and functional characteristics of T-cell subpopulations in CCC and IDC, aiming to clarify whether the inflammatory response is similar or distinct in these cardiomyopathies. We evaluated the expression of systemic cytokines, determined the sources of the different cytokines, the expression of their receptors, of cytotoxic molecules, and of molecules associated with recruitment to the heart by circulating CD4+, CD8+, and CD4-CD8- T-cells from CCC and IDC patients, using multiparameter flow cytometry combined with conventional and unsupervised machine-learning strategies. We also used an in silico approach to identify the expression of genes that code for key molecules related to T-cell function in hearts of patient with CCC and IDC. Our data demonstrated that CCC patients displayed a more robust systemic inflammatory cytokine production as compared to IDC. While CD8+ T-cells were highly activated in CCC as compared to IDC, CD4+ T-cells were more activated in IDC. In addition to differential expression of functional molecules, these cells also displayed distinct expression of molecules associated with recruitment to the heart. In silico analysis of gene transcripts in the cardiac tissue demonstrated a significant correlation between CD8 and inflammatory, cytotoxic and cardiotropic molecules in CCC transcripts, while no correlation with CD4 was observed. A positive correlation was observed between CD4 and perforin transcripts in hearts from IDC but not CCC, as compared to normal tissue. These data show a clearly distinct systemic and local cellular response in CCC and IDC, despite their similar cardiac impairment, which may contribute to identifying specific immunotherapeutic targets in these diseases.

20.
Acta Trop ; 229: 106367, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35167802

RESUMO

In the Americas, Lutzomyia longipalpis is the most relevant sand fly species for the transmission of visceral leishmaniasis. For its vector control in Brazil, insecticide spraying has not shown persistent reduction in disease prevalence while some sand fly populations are reported resistant to the insecticides used in spraying. The usage of repellents and personal protection behavior can reduce vector borne diseases prevalence. Therefore, the search for new repellent compounds is needed to use together with insecticide spraying, especially from natural sources to overcome the resistance developed by some sand fly populations to the compounds commercially used. In silico strategies have been applied together with repellency bioassays successfully identifying new bioactive compounds from natural sources. Thus, the present study aimed to screen repellent potential of neem (Azadirachta indica), citronella (Cymbopogon winterianus), bushy matgrass (Lippia alba) and 'alecrim do mato' (Lippia thymoides) essential oils against L. longipalpis and to identify potential repellent compounds by chemical analysis and in silico approach. Plant essential oils were extracted from leaves and repellency bioassays were performed on volunteers using colony reared L. longipalpis. Aside from neem oil, all other tested essential oil has shown a reduced number of sand fly bites using higher concentrations. Chemical composition from oils was assessed and its compounds were screened on a pharmacophore model using odorant binding protein 1 (OBP1). All essential oils were majorly composed of either oxygenated monoterpenes, except for the oil extracted from neem which was composed of sesquiterpene hydrocarbons. Molecular docking was performed with the compounds that best superimposed in the OBP1 pharmacophore model, identifying those binding to OBP4, which is associated with insect repellency behavior. Citronellol, Citronellol acetate, Citronellal and Geranyl acetate showed similar interactions with OBP4 binding site as DEET. Thus, it is suggested that these compounds are able to bind to L. longipalpis OBP4 generating repellent behavior in sand flies.


Assuntos
Repelentes de Insetos , Óleos Voláteis , Psychodidae , Animais , Bioensaio , Humanos , Repelentes de Insetos/farmacologia , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa