Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466952

RESUMO

Rotaphone-CY is a six-component short-period seismograph that is capable of the co-located recording of three translational (ground velocity) components along three orthogonal axes and three rotational (rotation rate) components around the three axes in one device. It is a mechanical sensor system utilizing records from elemental sensors (geophones) arranged in parallel pairs to derive differential motions in the pairs. The pairs are attached to a rigid frame that is anchored to the ground. The model design, the latest one among various Rotaphone designs based on the same principle and presented elsewhere, is briefly introduced. The upgrades of the new model are a 32-bit A/D converter, a more precise placing of the geophones to parallel pairs and a better housing, which protects the instrument from external electromagnetic noise. The instrument is still in a developmental stage. It was tested in a field experiment that took place at the Geophysical Observatory in Fürstenfeldbruck (Germany) in November 2019. Four Rotaphones-CY underwent the huddle-testing phase of the experiment as well as the field-deployment phase, in which the instruments were installed in a small-aperture seismic array of a triangular shape. The preliminary results from this active-source experiment are shown. Rotaphone-CY data are verified, in part, by various approaches: mutual comparison of records from four independent Rotaphone-CY instruments, waveform matching according to rotation-to-translation relations, and comparison to array-derived rotations when applicable. The preliminary results are very promising and they suggest the good functionality of the Rotaphone-CY design. It has been proved that the present Rotaphone-CY model is a reliable instrument for measuring short-period seismic rotations of the amplitudes as small as 10-7 rad/s.

2.
Sensors (Basel) ; 21(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401539

RESUMO

Interest in measuring displacement gradients, such as rotation and strain, is growing in many areas of geophysical research. This results in an urgent demand for reliable and field-deployable instruments measuring these quantities. In order to further establish a high-quality standard for rotation and strain measurements in seismology, we organized a comparative sensor test experiment that took place in November 2019 at the Geophysical Observatory of the Ludwig-Maximilians University Munich in Fürstenfeldbruck, Germany. More than 24 different sensors, including three-component and single-component broadband rotational seismometers, six-component strong-motion sensors and Rotaphone systems, as well as the large ring laser gyroscopes ROMY and a Distributed Acoustic Sensing system, were involved in addition to 14 classical broadband seismometers and a 160 channel, 4.5 Hz geophone chain. The experiment consisted of two parts: during the first part, the sensors were co-located in a huddle test recording self-noise and signals from small, nearby explosions. In a second part, the sensors were distributed into the field in various array configurations recording seismic signals that were generated by small amounts of explosive and a Vibroseis truck. This paper presents details on the experimental setup and a first sensor performance comparison focusing on sensor self-noise, signal-to-noise ratios, and waveform similarities for the rotation rate sensors. Most of the sensors show a high level of coherency and waveform similarity within a narrow frequency range between 10 Hz and 20 Hz for recordings from a nearby explosion signal. Sensor as well as experiment design are critically accessed revealing the great need for reliable reference sensors.

3.
Sensors (Basel) ; 20(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028001

RESUMO

A comparative active experiment that is aimed at collocated measurement of seismic rotation rates along three orthogonal axes by means of three different methods is described. The rotation rates in a short-period range of 6-20 Hz were obtained using three different methods: the 6C Rotaphone sensor system developed by the authors, the commercial R-1 rotational sensor by Eentec, and a small-aperture array of twelve standard velocigraphs in a rectangular arrangement. Those three methods are compared and discussed in detail. A medium-size quarry blast was used as a seismic source. At a distance of approximately 240 m, the rotation rates reached an amplitude of the order of magnitude of 10-4-10-5 rad/s. The array derived rotation rates displayed serious limitations, as clearly documented. The R-1 instruments have shown certain technical problems that partly limit their applicability. The measured rotation rates were compared to the relevant acceleration components according to rotation-to-translation relations. Out of all the three methods, the records best matching the acceleration components were made by Rotaphone. The experiment also revealed that rotation rates in the given short-period range noticeably changed over a distance as short as 2 m.

4.
Rev Sci Instrum ; 83(8): 086108, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938350

RESUMO

We have developed and tested (calibration, linearity, and cross-axis errors) a new six-degree-of-freedom mechanical seismic sensor for collocated measurements of three translational and three rotational ground motion velocity components. The device consists of standard geophones arranged in parallel pairs to detect spatial gradients. The instrument operates in a high-frequency range (above the natural frequency of the geophones, 4.5 Hz). Its theoretical sensitivity limit in this range is 10(-9) m/s in ground velocity and 10(-9) rad/s in rotation rate. Small size and weight, and easy installation and maintenance make the instrument useful for local-earthquake recording and seismic prospecting.

5.
Rev Sci Instrum ; 81(8): 084501, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20815619

RESUMO

A new mechanical sensor system for recording the rotation of ground velocity has been constructed. It is based on measurements of differential motions between paired sensors mounted along the perimeter of a rigid (undeformable) disk. The elementary sensors creating the pairs are sensitive low-frequency geophones currently used in seismic exploration to record translational motions. The main features of the new rotational seismic sensor system are flat characteristics in the wide frequency range from 1 to 200 Hz and sensitivity limit of the order of 10(-8) rad/s. Notable advantages are small dimensions, portability, easy installation and operation in the field, and the possibility of calibrating the geophones in situ simultaneously with the measurement. An important feature of the instrument is that it provides records of translational seismic motions together with rotations, which allows many important seismological applications. We have used the new sensor system to record the vertical rotation velocity due to a small earthquake of M(L)=2.2, which occurred within the earthquake swarm in Western Bohemia in autumn 2008. We found good agreement of the rotation record with the transverse acceleration as predicted by theory. This measurement demonstrates that this device has a much wider application than just to prospecting measurements, for which it was originally designed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa