Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 128(4): 994-1010, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001748

RESUMO

Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. Electromyography (EMG) was recorded from eight hand-forearm muscles in eight healthy individuals. Modularity was defined using non-negative matrix factorization to identify low-rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high-density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both data sets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest that corticospinal connectivity to individual intrinsic hand muscles may be combined with modular multimuscle activation via synergies in the formation of hand postures.NEW & NOTEWORTHY This is the first work to examine the similarity of modularity in hand muscle responses to transcranial magnetic stimulation (TMS) of the motor cortex and that derived from voluntary hand movement. We show that TMS-elicited muscle synergies of the hand, measured at rest, reflect those found in voluntary behavior involving finger fractionation. This work provides a basis for future work using TMS to investigate muscle activation modularity in the human motor system.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Animais , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Mãos/fisiologia , Humanos , Córtex Motor/fisiologia , Movimento , Músculo Esquelético/fisiologia
2.
J Electrocardiol ; 71: 1-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34979408

RESUMO

BACKGROUND: The sequence of myocardial activation and recovery can be studied in detail by invasive catheter recordings of cardiac electrograms (EGMs), or noninvasive inverse reconstructions thereof with electrocardiographic imaging (ECGI). Local activation and recovery times are obtained from a unipolar EGM by the moment of maximum downslope of the QRS complex or maximum upslope of the T wave, respectively. However, both invasive and noninvasive recordings of intracardiac EGMs may suffer from noise and fractionation, making reliable detection of these deflections nontrivial. METHODS: Here, we introduce a novel method that benefits from the spatial coupling of these processes, and incorporate not only the temporal EGM deflection, but also the spatial gradients. We validated this approach in computer simulations, in animal data with ECGI and invasive electrode recordings, and illustrated its use in a clinical case. RESULTS: In the simulated data, the spatiotemporal approach was able to incorporate spatial information to better select the correct deflection in artificially fractionated EGMs and outperformed the traditional temporal-only method. In experimental data, the accuracy of time estimation from ECGI compared to invasive recordings significantly increased from R = 0.73 (activation) and R = 0.58 (recovery) with the temporal-only method to R = 0.79 (activation) and R = 0.72 (recovery) with the novel approach. Localization of the pacing origin of paced beats improved significantly from 36 mm mean error with the temporal-only approach to 23 mm with the spatiotemporal approach. CONCLUSION: The spatiotemporal method to compute activation and recovery times from EGMs outperformed the traditional temporal-only approach in which spatial information was not taken into account.


Assuntos
Mapeamento Potencial de Superfície Corporal , Eletrocardiografia , Animais , Arritmias Cardíacas/diagnóstico , Mapeamento Potencial de Superfície Corporal/métodos , Eletrocardiografia/métodos , Técnicas Eletrofisiológicas Cardíacas , Coração/diagnóstico por imagem , Humanos
3.
Neuroimage ; 202: 116124, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31473351

RESUMO

Transcranial alternating current stimulation (tACS) is a noninvasive method used to modulate activity of superficial brain regions. Deeper and more steerable stimulation could potentially be achieved using transcranial temporal interference stimulation (tTIS): two high-frequency alternating fields interact to produce a wave with an envelope frequency in the range thought to modulate neural activity. Promising initial results have been reported for experiments with mice. In this study we aim to better understand the electric fields produced with tTIS and examine its prospects in humans through simulations with murine and human head models. A murine head finite element model was used to simulate previously published experiments of tTIS in mice. With a total current of 0.776 mA, tTIS electric field strengths up to 383 V/m were reached in the modeled mouse brain, affirming experimental results indicating that suprathreshold stimulation is possible in mice. Using a detailed anisotropic human head model, tTIS was simulated with systematically varied electrode configurations and input currents to investigate how these parameters influence the electric fields. An exhaustive search with 88 electrode locations covering the entire head (146M current patterns) was employed to optimize tTIS for target field strength and focality. In all analyses, we investigated maximal effects and effects along the predominant orientation of local neurons. Our results showed that it was possible to steer the peak tTIS field by manipulating the relative strength of the two input fields. Deep brain areas received field strengths similar to conventional tACS, but with less stimulation in superficial areas. Maximum field strengths in the human model were much lower than in the murine model, too low to expect direct stimulation effects. While field strengths from tACS were slightly higher, our results suggest that tTIS is capable of producing more focal fields and allows for better steerability. Finally, we present optimal four-electrode current patterns to maximize tTIS in regions of the pallidum (0.37 V/m), hippocampus (0.24 V/m) and motor cortex (0.57 V/m).


Assuntos
Encéfalo , Simulação por Computador , Modelos Biológicos , Estimulação Transcraniana por Corrente Contínua , Adulto , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Transcraniana por Corrente Contínua/instrumentação , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Transcraniana por Corrente Contínua/normas
4.
Neuroimage ; 173: 35-48, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427847

RESUMO

Direct stimulation of the cortical surface is used clinically for cortical mapping and modulation of local activity. Future applications of cortical modulation and brain-computer interfaces may also use cortical stimulation methods. One common method to deliver current is through electrocorticography (ECoG) stimulation in which a dense array of electrodes are placed subdurally or epidurally to stimulate the cortex. However, proximity to cortical tissue limits the amount of current that can be delivered safely. It may be desirable to deliver higher current to a specific local region of interest (ROI) while limiting current to other local areas more stringently than is guaranteed by global safety limits. Two commonly used global safety constraints bound the total injected current and individual electrode currents. However, these two sets of constraints may not be sufficient to prevent high current density locally (hot-spots). In this work, we propose an efficient approach that prevents current density hot-spots in the entire brain while optimizing ECoG stimulus patterns for targeted stimulation. Specifically, we maximize the current along a particular desired directional field in the ROI while respecting three safety constraints: one on the total injected current, one on individual electrode currents, and the third on the local current density magnitude in the brain. This third set of constraints creates a computational barrier due to the huge number of constraints needed to bound the current density at every point in the entire brain. We overcome this barrier by adopting an efficient two-step approach. In the first step, the proposed method identifies the safe brain region, which cannot contain any hot-spots solely based on the global bounds on total injected current and individual electrode currents. In the second step, the proposed algorithm iteratively adjusts the stimulus pattern to arrive at a solution that exhibits no hot-spots in the remaining brain. We report on simulations on a realistic finite element (FE) head model with five anatomical ROIs and two desired directional fields. We also report on the effect of ROI depth and desired directional field on the focality of the stimulation. Finally, we provide an analysis of optimization runtime as a function of different safety and modeling parameters. Our results suggest that optimized stimulus patterns tend to differ from those used in clinical practice.


Assuntos
Eletrocorticografia/métodos , Modelos Neurológicos , Encéfalo/fisiologia , Simulação por Computador , Eletrodos , Humanos
5.
J Electrocardiol ; 51(6S): S116-S120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30122455

RESUMO

BACKGROUND: Myocardial ischemia has a complex and time-varying electrocardiographic signature that is used to diagnose and stratify severity. Despite the ubiquitous clinical use of the ECG to detect ischemia, the sensitivity and specificity of ECG based detection of myocardial ischemia are still inadequate. PURPOSE: The purpose of this study was to compare, using animal models, the performance of several traditional ECG-based metrics for detecting acute ischemia against two novel metrics, the Laplacian Eigenmap (LE) parameters and a three-dimensional estimate of Conduction Velocity (CV). METHODS: LE is a machine learning technique that reduces the dimensions of simultaneously recorded time signals using a non-linear embedding followed by an singular value decomposition to represent each multichannel recording as a single trajectory on a manifold. Perturbations in the trajectories suggest the presence of myocardial ischemia. CV was computed using a tetrahedral mesh created from the electrode locations of transmural plunge needles. To validate the results, we used electrograms collected over 95 episodes of acutely induced myocardial ischemia in 15 canine and 2 porcine subjects. The LE and CV metrics were compared against traditional metrics derived from the ST segment, the T wave, the QRS of the same electrograms. The response time and robustness of each metric was quantified using parameters we defined as time to threshold (TTT) and contrast ratio (CR). RESULTS: The temporal performance of the metrics evaluated throughout the ischemic episodes showed a consistent relationship; the LE metrics changed earlier than those from the T wave, which were followed by those from the ST segment, and finally from the QRS. The CV results showed median drops in conduction velocity throughout the perfusion bed of more than 23% in canines and over 12% during half of the induced ischemia episodes in swine. The other half of the episodes in swine produced a 76% drop. CONCLUSIONS: Our results suggest that the LE metric is more sensitive to acute ischemia than traditional single parameters used in previous studies, likely because it incorporates the entire QRST across multiple electrodes in a way that captures their most salient features in a low-dimensional space. The estimates of conduction velocity suggest substantial, in some cases dramatic slowing of the spread of activation, a finding that is not surprising but has not been documented in such three-dimensional detail before. The experiments and these new metrics provide a means to both explore details of the acute ischemic response not available from humans and suggest a path to translate this knowledge into improvements in clinical scoring of ischemia.


Assuntos
Eletrocardiografia/métodos , Aprendizado de Máquina , Isquemia Miocárdica/diagnóstico , Animais , Modelos Animais de Doenças , Cães , Sensibilidade e Especificidade , Suínos , Fatores de Tempo
6.
Biochemistry ; 56(34): 4559-4567, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28767234

RESUMO

Crystal structures of adenylate kinase (AdK) from Escherichia coli capture two states: an "open" conformation (apo) obtained in the absence of ligands and a "closed" conformation in which ligands are bound. Other AdK crystal structures suggest intermediate conformations that may lie on the transition pathway between these two states. To characterize the transition from open to closed states in solution, X-ray solution scattering data were collected from AdK in the apo form and with progressively increasing concentrations of five different ligands. Scattering data from apo AdK are consistent with scattering predicted from the crystal structure of AdK in the open conformation. In contrast, data from AdK samples saturated with Ap5A do not agree with that calculated from AdK in the closed conformation. Using cluster analysis of available structures, we selected representative structures in five conformational states: open, partially open, intermediate, partially closed, and closed. We used these structures to estimate the relative abundances of these states for each experimental condition. X-ray solution scattering data obtained from AdK with AMP are dominated by scattering from AdK in the open conformation. For AdK in the presence of high concentrations of ATP and ADP, the conformational ensemble shifts to a mixture of partially open and closed states. Even when AdK is saturated with Ap5A, a significant proportion of AdK remains in a partially open conformation. These results are consistent with an induced-fit model in which the transition of AdK from an open state to a closed state is initiated by ATP binding.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Adenilato Quinase/química , Fosfatos de Dinucleosídeos/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Adenilato Quinase/genética , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética
7.
J Electrocardiol ; 48(6): 975-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26320369

RESUMO

INTRODUCTION: The "Experimental Data and Geometric Analysis Repository", or EDGAR is an Internet-based archive of curated data that are freely distributed to the international research community for the application and validation of electrocardiographic imaging (ECGI) techniques. The EDGAR project is a collaborative effort by the Consortium for ECG Imaging (CEI, ecg-imaging.org), and focused on two specific aims. One aim is to host an online repository that provides access to a wide spectrum of data, and the second aim is to provide a standard information format for the exchange of these diverse datasets. METHODS: The EDGAR system is composed of two interrelated components: 1) a metadata model, which includes a set of descriptive parameters and information, time signals from both the cardiac source and body-surface, and extensive geometric information, including images, geometric models, and measure locations used during the data acquisition/generation; and 2) a web interface. This web interface provides efficient, search, browsing, and retrieval of data from the repository. RESULTS: An aggregation of experimental, clinical and simulation data from various centers is being made available through the EDGAR project including experimental data from animal studies provided by the University of Utah (USA), clinical data from multiple human subjects provided by the Charles University Hospital (Czech Republic), and computer simulation data provided by the Karlsruhe Institute of Technology (Germany). CONCLUSIONS: It is our hope that EDGAR will serve as a communal forum for sharing and distribution of cardiac electrophysiology data and geometric models for use in ECGI research.


Assuntos
Arritmias Cardíacas/diagnóstico , Curadoria de Dados/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Eletrocardiografia , Internet , Pesquisa Biomédica , Humanos , Interface Usuário-Computador
8.
IEEE Trans Signal Process ; 63(20): 5383-5394, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26924916

RESUMO

In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here.

9.
Neuroimage ; 101: 513-30, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24821532

RESUMO

Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques.


Assuntos
Gráficos por Computador/normas , Eletroencefalografia/métodos , Ilustração Médica , Estimulação Transcraniana por Corrente Contínua/métodos , Humanos
10.
J Electrocardiol ; 47(1): 20-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24369741

RESUMO

A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.


Assuntos
Potenciais de Ação/fisiologia , Mapeamento Potencial de Superfície Corporal/métodos , Diagnóstico por Computador/métodos , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Modelos Cardiovasculares , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-38498738

RESUMO

Transcranial magnetic stimulation (TMS) is often applied to the motor cortex to stimulate a collection of motor evoked potentials (MEPs) in groups of peripheral muscles. The causal interface between TMS and MEP is the selective activation of neurons in the motor cortex; moving around the TMS 'spot' over the motor cortex causes different MEP responses. A question of interest is whether a collection of MEP responses can be used to identify the stimulated locations on the cortex, which could potentially be used to then place the TMS coil to produce chosen sets of MEPs. In this work we leverage our previous report on a 3D convolutional neural network (CNN) architecture that predicted MEPs from the induced electric field, to tackle an inverse imaging task in which we start with the MEPs and estimate the stimulated regions on the motor cortex. We present and evaluate five different inverse imaging CNN architectures, both conventional and generative, in terms of several measures of reconstruction accuracy. We found that one architecture, which we propose as M2M-InvNet, consistently achieved the best performance.


Assuntos
Córtex Motor , Humanos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Músculo Esquelético/fisiologia , Potencial Evocado Motor/fisiologia , Neurônios , Eletromiografia/métodos
12.
Opt Lett ; 38(13): 2357-9, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23811927

RESUMO

We apply reparameterization and the maximum likelihood method to a specific fluorescence-mediated tomography problem where the solution is known a priori to be extremely sparse (i.e., all image values are zero except for one). Our algorithm performs significantly better than a standard image reconstruction method, particularly for deep-seated targets, and achieves close to 150 µm accuracy in a 3 mm diameter cross-sectional area with only 12 measurements. Moreover, results do not depend on the selection of a regularization parameter or other ad hoc values, and since reconstructions can be computed very quickly, the algorithm is also suitable for real-time implementation.


Assuntos
Citometria de Fluxo/métodos , Fluorescência , Processamento de Imagem Assistida por Computador/métodos , Tomografia/métodos , Funções Verossimilhança , Imagens de Fantasmas
13.
Comput Biol Med ; 152: 106407, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521358

RESUMO

BACKGROUND: Computational biomedical simulations frequently contain parameters that model physical features, material coefficients, and physiological effects, whose values are typically assumed known a priori. Understanding the effect of variability in those assumed values is currently a topic of great interest. A general-purpose software tool that quantifies how variation in these parameters affects model outputs is not broadly available in biomedicine. For this reason, we developed the 'UncertainSCI' uncertainty quantification software suite to facilitate analysis of uncertainty due to parametric variability. METHODS: We developed and distributed a new open-source Python-based software tool, UncertainSCI, which employs advanced parameter sampling techniques to build polynomial chaos (PC) emulators that can be used to predict model outputs for general parameter values. Uncertainty of model outputs is studied by modeling parameters as random variables, and model output statistics and sensitivities are then easily computed from the emulator. Our approaches utilize modern, near-optimal techniques for sampling and PC construction based on weighted Fekete points constructed by subsampling from a suitably randomized candidate set. RESULTS: Concentrating on two test cases-modeling bioelectric potentials in the heart and electric stimulation in the brain-we illustrate the use of UncertainSCI to estimate variability, statistics, and sensitivities associated with multiple parameters in these models. CONCLUSION: UncertainSCI is a powerful yet lightweight tool enabling sophisticated probing of parametric variability and uncertainty in biomedical simulations. Its non-intrusive pipeline allows users to leverage existing software libraries and suites to accurately ascertain parametric uncertainty in a variety of applications.


Assuntos
Coração , Software , Incerteza , Simulação por Computador , Bioengenharia
14.
Physiol Meas ; 44(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37734339

RESUMO

Objective.Electrocardiographic imaging (ECGI) is a functional imaging modality that consists of two related problems, the forward problem of reconstructing body surface electrical signals given cardiac bioelectric activity, and the inverse problem of reconstructing cardiac bioelectric activity given measured body surface signals. ECGI relies on a model for how the heart generates bioelectric signals which is subject to variability in inputs. The study of how uncertainty in model inputs affects the model output is known as uncertainty quantification (UQ). This study establishes develops, and characterizes the application of UQ to ECGI.Approach.We establish two formulations for applying UQ to ECGI: a polynomial chaos expansion (PCE) based parametric UQ formulation (PCE-UQ formulation), and a novel UQ-aware inverse formulation which leverages our previously established 'joint-inverse' formulation (UQ joint-inverse formulation). We apply these to evaluate the effect of uncertainty in the heart position on the ECGI solutions across a range of ECGI datasets.Main results.We demonstrated the ability of our UQ-ECGI formulations to characterize the effect of parameter uncertainty on the ECGI inverse problem. We found that while the PCE-UQ inverse solution provided more complex outputs such as sensitivities and standard deviation, the UQ joint-inverse solution provided a more interpretable output in the form of a single ECGI solution. We find that between these two methods we are able to assess a wide range of effects that heart position variability has on the ECGI solution.Significance.This study, for the first time, characterizes in detail the application of UQ to the ECGI inverse problem. We demonstrated how UQ can provide insight into the behavior of ECGI using variability in cardiac position as a test case. This study lays the groundwork for future development of UQ-ECGI studies, as well as future development of ECGI formulations which are robust to input parameter variability.

15.
Trends Cogn Sci ; 27(3): 246-257, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739181

RESUMO

Neuroimaging research has been at the forefront of concerns regarding the failure of experimental findings to replicate. In the study of brain-behavior relationships, past failures to find replicable and robust effects have been attributed to methodological shortcomings. Methodological rigor is important, but there are other overlooked possibilities: most published studies share three foundational assumptions, often implicitly, that may be faulty. In this paper, we consider the empirical evidence from human brain imaging and the study of non-human animals that calls each foundational assumption into question. We then consider the opportunities for a robust science of brain-behavior relationships that await if scientists ground their research efforts in revised assumptions supported by current empirical evidence.


Assuntos
Encéfalo , Neuroimagem , Animais , Humanos , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
16.
PLoS One ; 18(6): e0286465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352290

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is widely used in both research and clinical settings to modulate human brain function and behavior through the engagement of the mechanisms of plasticity. Based upon experiments using single-pulse TMS as a probe, the physiologic mechanism of these effects is often assumed to be via changes in cortical excitability, with 10 Hz rTMS increasing and 1 Hz rTMS decreasing the excitability of the stimulated region. However, the reliability and reproducibility of these rTMS protocols on cortical excitability across and within individual subjects, particularly in comparison to robust sham stimulation, have not been systematically examined. OBJECTIVES: In a cohort of 28 subjects (39 ± 16 years), we report the first comprehensive study to (1) assess the neuromodulatory effects of traditional 1 Hz and 10 Hz rTMS on corticospinal excitability against both a robust sham control, and two other widely used patterned rTMS protocols (intermittent theta burst stimulation, iTBS; and continuous theta burst stimulation, cTBS), and (2) determine the reproducibility of all rTMS protocols across identical repeat sessions. RESULTS: At the group level, neither 1 Hz nor 10 Hz rTMS significantly modulated corticospinal excitability. 1 Hz and 10 Hz rTMS were also not significantly different from sham and both TBS protocols. Reproducibility was poor for all rTMS protocols except for sham. Importantly, none of the real rTMS and TBS protocols demonstrated greater neuromodulatory effects or reproducibility after controlling for potential experimental factors including baseline corticospinal excitability, TMS coil deviation and the number of individual MEP trials. CONCLUSIONS: These results call into question the effectiveness and reproducibility of widely used rTMS techniques for modulating corticospinal excitability, and suggest the need for a fundamental rethinking regarding the potential mechanisms by which rTMS affects brain function and behavior in humans.


Assuntos
Excitabilidade Cortical , Córtex Motor , Humanos , Estimulação Magnética Transcraniana/métodos , Reprodutibilidade dos Testes , Córtex Motor/fisiologia , Potencial Evocado Motor/fisiologia
17.
Magn Reson Med ; 67(5): 1266-74, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22095768

RESUMO

The desire to understand complex mental processes using functional MRI drives development of imaging techniques that scan the whole human brain at a high spatial and temporal resolution. In this work, an accelerated multishot three-dimensional echo-planar imaging sequence is proposed to increase the temporal resolution of these studies. A combination of two modern acceleration techniques, UNFOLD and GRAPPA is used in the secondary phase encoding direction to reduce the scan time effectively. The sequence (repetition time of 1.02 s) was compared with standard two-dimensional echo-planar imaging (3 s) and multishot three-dimensional echo-planar imaging (3 s) sequences with both block design and event-related functional MRI paradigms. With the same experimental setup and imaging time, the temporal resolution improvement with our sequence yields similar activation regions in the block design functional MRI paradigm with slightly increased t-scores. Moreover, additional information on the timing of rapid dynamic changes was extracted from accelerated images for the case of the event related complex mental paradigm.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Imagem Ecoplanar/métodos , Potenciais Evocados/fisiologia , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
18.
Comput Biol Med ; 141: 105128, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973587

RESUMO

The standard 12-lead electrocardiogram (ECG) is a diagnostic tool to asses cardiac electrical activity. The vectorcardiogram is a related tool that represents that activity as the direction of a vector. In this work we investigate CineECG, a new 12-lead ECG based analysis method designed to directly estimate the average cardiac anatomical location of activation over time. We describe CineECG calculation and a novel comparison parameter, the average isochrone position (AIP). In a model study, fourteen different activation sequences were simulated and corresponding 12-lead ECGs were computed. The CineECG was compared to AIP in terms of location and direction. In addition, 67-lead body surface potential maps from ten patients were used to study the sensitivity of CineECG to electrode mispositioning and anatomical model selection. Epicardial activation maps from four patients were used for further evaluation. The average distance between CineECG and AIP across the fourteen sequences was 23.7 ± 2.4 mm, with significantly better agreement in the terminal (27.3 ± 5.7 mm) versus the initial QRS segment (34.2 ± 6.1 mm). Up to four cm variation in electrode positioning produced an average distance of 6.5 ± 4.5 mm between CineECG trajectories, while substituting a generic heart/torso model for a patient-specific one produced an average difference of 6.1 ± 4.8 mm. Dominant epicardial activation map features were recovered. Qualitatively, CineECG captured significant features of activation sequences and was robust to electrode misplacement. CineECG provides a realistic representation of the average cardiac activation in normal and diseased hearts. In particular, the terminal segment of the CineECG might be useful to detect pathology.


Assuntos
Eletrocardiografia , Coração , Eletrocardiografia/métodos , Eletrodos , Coração/diagnóstico por imagem , Humanos , Modelos Anatômicos
19.
Comput Biol Med ; 142: 105174, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065409

RESUMO

Electrocardiographic imaging (ECGI) is a noninvasive technique to assess the bioelectric activity of the heart which has been applied to aid in clinical diagnosis and management of cardiac dysfunction. ECGI is built on mathematical models that take into account several patient specific factors including the position of the heart within the torso. Errors in the localization of the heart within the torso, as might arise due to natural changes in heart position from respiration or changes in body position, contribute to errors in ECGI reconstructions of the cardiac activity, thereby reducing the clinical utility of ECGI. In this study we present a novel method for the reconstruction of cardiac geometry utilizing noninvasively acquired body surface potential measurements. Our geometric correction method simultaneously estimates the cardiac position over a series of heartbeats by leveraging an iterative approach which alternates between estimating the cardiac bioelectric source across all heartbeats and then estimating cardiac positions for each heartbeat. We demonstrate that our geometric correction method is able to reduce geometric error and improve ECGI accuracy in a wide range of testing scenarios. We examine the performance of our geometric correction method using different activation sequences, ranges of cardiac motion, and body surface electrode configurations. We find that after geometric correction resulting ECGI solution accuracy is improved and variability of the ECGI solutions between heartbeats is substantially reduced.


Assuntos
Mapeamento Potencial de Superfície Corporal , Eletrocardiografia , Mapeamento Potencial de Superfície Corporal/métodos , Diagnóstico por Imagem , Eletrocardiografia/métodos , Coração/diagnóstico por imagem , Humanos
20.
Biol Psychol ; 167: 108242, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942287

RESUMO

The brain regulates the body by anticipating its needs and attempting to meet them before they arise - a process called allostasis. Allostasis requires a model of the changing sensory conditions within the body, a process called interoception. In this paper, we examine how interoception may provide performance feedback for allostasis. We suggest studying allostasis in terms of control theory, reviewing control theory's applications to related issues in physiology, motor control, and decision making. We synthesize these by relating them to the important properties of allostatic regulation as a control problem. We then sketch a novel formalism for how the brain might perform allostatic control of the viscera by analogy to skeletomotor control, including a mathematical view on how interoception acts as performance feedback for allostasis. Finally, we suggest ways to test implications of our hypotheses.


Assuntos
Alostase , Interocepção , Alostase/fisiologia , Encéfalo/fisiologia , Humanos , Interocepção/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa