Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(21): 215201, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856280

RESUMO

We investigate the propagation of Alfvén waves in the solar chromosphere, distinguishing between upward and downward propagating waves. We find clear evidence for the reflection of waves in the chromosphere and differences in propagation between cases with waves interpreted to be resonant or nonresonant with the overlying coronal structures. This establishes the wave connection to coronal element abundance anomalies through the action of the wave ponderomotive force on the chromospheric plasma, which interacts with chromospheric ions but not neutrals, thereby providing a novel mechanism of ion-neutral separation. This is seen as a "first ionization potential effect" when this plasma is lifted into the corona, with implications elsewhere on the Sun for the origin of the slow speed solar wind and its elemental composition.

2.
Sci Adv ; 7(10)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33658205

RESUMO

Shock waves associated with fast coronal mass ejections (CMEs) accelerate solar energetic particles (SEPs) in the long duration, gradual events that pose hazards to crewed spaceflight and near-Earth technological assets, but the source of the CME shock-accelerated plasma is still debated. Here, we use multi-messenger observations from the Heliophysics System Observatory to identify plasma confined at the footpoints of the hot, core loops of active region 11944 as the source of major gradual SEP events in January 2014. We show that the elemental composition signature detected spectroscopically at the footpoints explains the measurements made by particle counting techniques near Earth. Our results localize the elemental fractionation process to the top of the chromosphere. The plasma confined closest to that region, where the coronal magnetic field strength is high (a few hundred Gauss), develops the SEP composition signature. This source material is continually released from magnetic confinement and accelerated as SEPs following M-, C-, and X-class flares.

3.
Nat Commun ; 8(1): 183, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775304

RESUMO

The elemental composition in the coronae of low-activity solar-like stars appears to be related to fundamental stellar properties such as rotation, surface gravity, and spectral type. Here we use full-Sun observations from the Solar Dynamics Observatory, to show that when the Sun is observed as a star, the variation of coronal composition is highly correlated with a proxy for solar activity, the F10.7 cm radio flux, and therefore with the solar cycle phase. Similar cyclic variations should therefore be detectable spectroscopically in X-ray observations of solar analogs. The plasma composition in full-disk observations of the Sun is related to the evolution of coronal magnetic field activity. Our observations therefore introduce an uncertainty into the nature of any relationship between coronal composition and fixed stellar properties. The results highlight the importance of systematic full-cycle observations for understanding the elemental composition of solar-like stellar coronae.The Sun's elemental composition is a vital part of understanding the processes that transport energy from the interior to the outer atmosphere. Here, the authors show that if the Sun is observed as a star, then the variation of coronal composition is highly correlated with the F10.7cm radio flux.

4.
Nat Commun ; 6: 5947, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25562705

RESUMO

Fast (>700 km s(-1)) and slow (~400 km s(-1)) winds stream from the Sun, permeate the heliosphere and influence the near-Earth environment. While the fast wind is known to emanate primarily from polar coronal holes, the source of the slow wind remains unknown. Here we identify possible sites of origin using a slow solar wind source map of the entire Sun, which we construct from specially designed, full-disk observations from the Hinode satellite, and a magnetic field model. Our map provides a full-Sun observation that combines three key ingredients for identifying the sources: velocity, plasma composition and magnetic topology and shows them as solar wind composition plasma outflowing on open magnetic field lines. The area coverage of the identified sources is large enough that the sum of their mass contributions can explain a significant fraction of the mass loss rate of the solar wind.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa