Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(11): 4822-4827, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804186

RESUMO

Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.

2.
Proc Natl Acad Sci U S A ; 109(47): 19492-7, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23134723

RESUMO

Carbon exchange associated with accelerated erosion following land cover change is an important component of the global C cycle. In current assessments, however, this component is not accounted for. Here, we integrate the effects of accelerated C erosion across point, hillslope, and catchment scale for the 780-km(2) Dijle River catchment over the period 4000 B.C. to A.D. 2000 to demonstrate that accelerated erosion results in a net C sink. We found this long-term C sink to be equivalent to 43% of the eroded C and to have offset 39% (17-66%) of the C emissions due to anthropogenic land cover change since the advent of agriculture. Nevertheless, the erosion-induced C sink strength is limited by a significant loss of buried C in terrestrial depositional stores, which lagged the burial. The time lag between burial and subsequent loss at this study site implies that the C buried in eroded terrestrial deposits during the agricultural expansion of the last 150 y cannot be assumed to be inert to further destabilization, and indeed might become a significant C source. Our analysis exemplifies that accounting for the non-steady-state C dynamics in geomorphic active systems is pertinent to understanding both past and future anthropogenic global change.


Assuntos
Atmosfera/química , Carbono/análise , Conservação dos Recursos Naturais , Solo/química , Bélgica , Geografia , Humanos , Fatores de Tempo
3.
Sci Total Environ ; 806(Pt 2): 150483, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597548

RESUMO

Lavaka (gullies) are often considered as the prime indication of a currently ongoing human-induced environmental crisis in Madagascar's highlands. Yet, lavaka are known to have existed long before human arrival and account for the majority of the long-term sediment input into the highland rivers and floodplains. The role of anthropogenic disturbances in their formation therefore remains highly debated and it is unclear whether lavaka erosion has recently increased. Here, we address these questions by evaluating the dynamics of lavaka in the Lake Alaotra region (central Madagascar). An overall birth to stabilization ratio of 6.1 indicates a rapid lavaka population growth over the period 1949-2010s. Using data on lavaka development we calculated a mean lavaka population age of 410 ± 40 years and estimate that the disequilibrium started at 870 ± 430 cal. BP. Floodplain sedimentation starts to increase around 1000 cal. BP and peaks over the last 400 years, thereby independently confirming this time frame of increased lavaka activity. Lavaka population dynamics modelling shows that a strong increase in environmental pressure over the last centuries is needed to attain current disequilibrium levels. A general drying of the climate since 950 cal. BP in combination with the introduction of cattle and growing human presence around 1000 cal. BP will likely have triggered the increase in lavaka erosion. However, the recent acceleration cannot be explained by climatic changes alone and seems to be linked to increased anthropogenic pressure on the environment. As such, we offer a fresh and quantitatively supported perspective on lavaka dynamics and human impact in central Madagascar, where our methodology can be used in other locations where similar questions on geomorphic equilibrium need to be answered.


Assuntos
Rios , Animais , Bovinos , Clima , Lagos , Madagáscar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa