Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Respir Res ; 25(1): 88, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336710

RESUMO

BACKGROUND: Long-term outcomes of lung transplantation (LTx) remain hampered by chronic lung allograft dysfunction (CLAD). Matrix metalloproteinase 9 (MMP-9) is a secretory endopeptidase identified as a key mediator in fibrosis processes associated with CLAD. The objective of this study was to investigate whether plasma MMP9 levels may be prognostic of CLAD development. METHODS: Participants were selected from the Cohort in Lung Transplantation (COLT) for which a biocollection was associated. We considered two time points, year 1 (Y1) and year 2 (Y2) post-transplantation, for plasma MMP-9 measurements. We analysed stable recipients at those time points, comparing those who would develop a CLAD within the 2 years following the measurement to those who would remain stable 2 years after. RESULTS: MMP-9 levels at Y1 were not significantly different between the CLAD and stable groups (230 ng/ml vs. 160 ng/ml, p = 0.4). For the Y2 analysis, 129 recipients were included, of whom 50 developed CLAD within 2 years and 79 remained stable within 2 years. MMP-9 plasma median concentrations were higher in recipients who then developed CLAD than in the stable group (230 ng/ml vs. 118 ng/ml, p = 0.003). In the multivariate analysis, the Y2 MMP-9 level was independently associated with CLAD, with an average increase of 150 ng/ml (95% CI [0-253], p = 0.05) compared to that in the stable group. The Y2 ROC curve revealed a discriminating capacity of blood MMP-9 with an area under the curve of 66%. CONCLUSION: Plasmatic MMP-9 levels measured 2 years after lung transplantation have prognostic value for CLAD.


Assuntos
Transplante de Pulmão , Metaloproteinase 9 da Matriz , Humanos , Prognóstico , Aloenxertos , Transplante de Pulmão/efeitos adversos , Pulmão , Biomarcadores , Estudos Retrospectivos
2.
Am J Nephrol ; : 1-14, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074452

RESUMO

INTRODUCTION: Buffalo/Mna rats spontaneously develop nephrotic syndrome (NS) which recurs after renal transplantation. The immunosuppressive drug LF15-0195 can promote regression of the initial and post-transplantation nephropathy via induction of regulatory T cells. We investigate if this drug has an additional effect on the expression and localization of podocyte specific proteins. METHODS: Buffalo/Mna kidney samples were collected before and after the occurrence of proteinuria, and after the remission of proteinuria induced by LF15-0195 treatment and compared by quantitative RT-PCR, Western blot, electron, and confocal microscopy to kidney samples of age-matched healthy rats. Cytoskeleton changes were assessed in culture by stress fibers induction by TNFα. RESULTS: We observed, by electron microscopy, a restoration of foot process architecture in the LF15-0195-treated Buff/Mna kidneys, consistent with proteinuria remission. Nephrin, podocin, CD2AP, and α-actinin-4 mRNA levels remained low during the active disease in the Buff/Mna, in comparison with healthy rats which increase, while podocalyxin and synaptopodin transcripts were elevated before the occurrence of the disease but did not differ from healthy animals after. No difference in the mRNA and protein expression between the untreated and the LF15-0195-treated proteinuric Buff/Mna were seen for these 6 proteins. No changes were observed by confocal microscopy in the protein distribution at a cellular level, but a more homogenous distribution similar to healthy rats, was observed within the glomeruli of LF15-0195-treated rats. In addition, LF15-0195 could partially restore actin cytoskeleton of endothelial cells in TNFα-induced-cell stress experiment. CONCLUSION: The effect of LF15-0195 treatment appears to be mediated by 2 mechanisms: an immunomodulatory effect via regulatory T cells induction, described in our previous work and which can act on immune cell involved in the disease pathogenesis, and an effect on the restoration of podocyte cytoskeleton, independent of expression levels of the proteins involved in the slit diaphragm and podocyte function, showed in this article.

3.
Transpl Int ; 37: 13043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050190

RESUMO

Recently, interest in transcriptomic assessment of kidney biopsies has been growing. This study investigates the use of NGS to identify gene expression changes and analyse the pathways involved in rejection. An Illumina bulk RNA sequencing on the polyadenylated RNA of 770 kidney biopsies was conducted. Differentially-expressed genes (DEGs) were determined for AMR and TCMR using DESeq2. Genes were segregated according to their previous descriptions in known panels (microarray or the Banff Human Organ Transplant (B-HOT) panel) to obtain NGS-specific genes. Pathway enrichment analysis was performed using the Reactome and Kyoto Encyclopaedia of Genes and Genomes (KEGG) public repositories. The differential gene expression using NGS analysis identified 6,141 and 8,478 transcripts associated with AMR and TCMR. While most of the genes identified were included in the microarray and the B-HOT panels, NGS analysis identified 603 (9.8%) and 1,186 (14%) new specific genes. Pathways analysis showed that the B-HOT panel was associated with the main immunological processes involved during AMR and TCMR. The microarrays specifically integrated metabolic functions and cell cycle progression processes. Novel NGS-specific based transcripts associated with AMR and TCMR were discovered, which might represent a novel source of targets for drug designing and repurposing.


Assuntos
Rejeição de Enxerto , Sequenciamento de Nucleotídeos em Larga Escala , Transplante de Rim , Linfócitos T , Humanos , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Biópsia , Masculino , Feminino , Linfócitos T/imunologia , Pessoa de Meia-Idade , Adulto , Perfilação da Expressão Gênica , Transcriptoma , Rim/patologia , Análise de Sequência de RNA , Idoso
4.
Eur J Epidemiol ; 39(5): 549-564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625480

RESUMO

There is an unmet need for robust and clinically validated biomarkers of kidney allograft rejection. Here we present the KTD-Innov study (ClinicalTrials.gov, NCT03582436), an unselected deeply phenotyped cohort of kidney transplant recipients with a holistic approach to validate the clinical utility of precision diagnostic biomarkers. In 2018-2019, we prospectively enrolled consecutive adult patients who received a kidney allograft at seven French centers and followed them for a year. We performed multimodal phenotyping at follow-up visits, by collecting clinical, biological, immunological, and histological parameters, and analyzing a panel of 147 blood, urinary and kidney tissue biomarkers. The primary outcome was allograft rejection, assessed at each visit according to the international Banff 2019 classification. We evaluated the representativeness of participants by comparing them with patients from French, European, and American transplant programs transplanted during the same period. A total of 733 kidney transplant recipients (64.1% male and 35.9% female) were included during the study. The median follow-up after transplantation was 12.3 months (interquartile range, 11.9-13.1 months). The cumulative incidence of rejection was 9.7% at one year post-transplant. We developed a distributed and secured data repository in compliance with the general data protection regulation. We established a multimodal biomarker biobank of 16,736 samples, including 9331 blood, 4425 urinary and 2980 kidney tissue samples, managed and secured in a collaborative network involving 7 clinical centers, 4 analytical platforms and 2 industrial partners. Patients' characteristics, immune profiles and treatments closely resembled those of 41,238 French, European and American kidney transplant recipients. The KTD-Innov study is a unique holistic and multidimensional biomarker validation cohort of kidney transplant recipients representative of the real-world transplant population. Future findings from this cohort are likely to be robust and generalizable.


Assuntos
Biomarcadores , Rejeição de Enxerto , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Biomarcadores/urina , Biomarcadores/sangue , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Adulto , França/epidemiologia , Estudos de Coortes , Transplantados/estatística & dados numéricos
5.
Transplantation ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867352

RESUMO

The observation decades ago that inflammatory injuries because of an alloimmune response might be present even in the absence of concomitant clinical impairment in allograft function conduced to the later definition of subclinical rejection. Many studies have investigated the different subclinical rejections defined according to the Banff classification (subclinical T cell-mediated rejection and antibody-mediated rejection), overall concluding that these episodes worsened long-term allograft function and survival. These observations led several transplant teams to perform systematic protocolar biopsies to anticipate treatment of rejection episodes and possibly prevent allograft loss. Paradoxically, the invasive characteristics and associated logistics of such procedures paved the way to investigate noninvasive biomarkers (urine and blood) of subclinical rejection. Among them, several research teams proposed a blood gene signature developed from cohort studies, most of which achieved excellent predictive values for the occurrence of subclinical rejection, mainly antibody-mediated rejection. Interestingly, although all identified genes relate to immune subsets and pathways involved in rejection pathophysiology, very few transcripts are shared among these sets of genes, highlighting the heterogenicity of such episodes and the difficult but mandatory need for external validation of such tools. Beyond this, their application and value in clinical practice remain to be definitively demonstrated in both biopsy avoidance and prevention of clinical rejection episodes. Their combination with other biomarkers, either epidemiological or biological, could contribute to a more accurate picture of a patient's risk of rejection and guide clinicians in the follow-up of kidney transplant recipients.

6.
Clin Kidney J ; 17(4): sfae061, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606169

RESUMO

Cancer is a common complication after kidney transplantation. Kidney transplant recipients (KTR) have a 2- to 4-fold higher risk of developing cancer compared to the general population and post-transplant malignancy is the third most common cause of death in KTR. Moreover, it is well known that certain cancer types are overrepresented after transplantation, especially non-melanoma skin cancer. Immune checkpoint inhibitors (ICI) have revolutionized the treatment of cancer, with remarkable survival benefit in a subgroup of patients. ICI are monoclonal antibodies that block the binding of specific co-inhibitory signaling molecules. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1), and its ligand programmed cell death ligand 1 (PD-L1) are the main targets of ICI. Solid organ transplant recipients (SOTR) have been excluded from clinical trials owing to concerns about tumor response, allo-immunity, and risk of transplant rejection. Indeed, graft rejection has been estimated as high as 48% and represents an emerging problem. The underlying mechanisms of organ rejection in the context of treatment with ICI are poorly understood. The search for restricted antitumoral responses without graft rejection is of paramount importance. This review summarizes the current knowledge of the use of ICI in KTR, the potential mechanisms involved in kidney graft rejection during ICI treatment, potential biomarkers of rejection, and how to deal with rejection in clinical practice.

7.
Cells ; 13(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39120317

RESUMO

The aim of our study was to determine whether granzyme B-expressing regulatory B cells (GZMB+ B cells) are enriched in the blood of transplant patients with renal graft tolerance. To achieve this goal, we analysed two single-cell RNA sequencing (scRNAseq) datasets: (1) peripheral blood mononuclear cells (PBMCs), including GZMB+ B cells from renal transplant patients, i.e., patients with stable graft function on conventional immunosuppressive treatment (STA, n = 3), drug-free tolerant patients (TOL, n = 3), and patients with antibody-mediated rejection (ABMR, n = 3), and (2) ex-vivo-induced GZMB+ B cells from these groups. In the patient PBMCs, we first showed that natural GZMB+ B cells were enriched in genes specific to Natural Killer (NK) cells (such as NKG7 and KLRD1) and regulatory B cells (such as GZMB, IL10, and CCL4). We performed a pseudotemporal trajectory analysis of natural GZMB+ B cells and showed that they were highly differentiated B cells with a trajectory that is very different from that of conventional memory B cells and linked to the transcription factor KLF13. By specifically analysing GZMB+ natural B cells in TOLs, we found that these cells had a very specific transcriptomic profile associated with a reduction in the expression of HLA molecules, apoptosis, and the inflammatory response (in general) in the blood and that this signature was conserved after ex vivo induction, with the induction of genes associated with migration processes, such as CCR7, CCL3, or CCL4. An analysis of receptor/ligand interactions between these GZMB+/- natural B cells and all of the immune cells present in PBMCs also demonstrated that GZMB+ B cells were the B cells that carried the most ligands and had the most interactions with other immune cells, particularly in tolerant patients. Finally, we showed that these GZMB+ B cells were able to infiltrate the graft under inflammatory conditions, thus suggesting that they can act in locations where immune events occur.


Assuntos
Linfócitos B Reguladores , Granzimas , Transplante de Rim , Humanos , Granzimas/metabolismo , Granzimas/genética , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Diferenciação Celular , Feminino , Masculino , Sistema Imunitário/metabolismo , Pessoa de Meia-Idade , Rejeição de Enxerto/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia
8.
Front Transplant ; 1: 952785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38994376

RESUMO

Leukocyte immunoglobulin-like receptors (LILRs) are a family of inhibitory or stimulatory receptors expressed by immune cell types belonging to both myeloid and lymphoid lineage. Several members of the LILR family recognize major histocompatibility complex class I and thus play important roles in a range of clinical situations including pregnancy. Moreover, paired immunoglobulin-like receptors (PIRs), the murine orthologs of LILRs, are implicated in experimental transplant allorecognition by monocytes and contribute to the induction of donor-specific monocyte-memory. After non-self recognition, activating PIRs are transiently overexpressed at the surface of monocytes and participate in donor-specific monocyte recruitment, leading to graft rejection in vivo. In the present study, we mapped LILR expression and also their respective reported ligands at single cell level in the renal allograft and circulating cells in the context of kidney transplant rejection. Recipient-derived monocytes were shown to infiltrate the donor tissue and to differentiate into macrophages. We thus also investigate LILR expression during in vitro monocyte-to-macrophage differentiation in order to characterize the myeloid population that directly contribute to allorecognition. Altogether our results emphasize non-classical monocytes and CD68+ M1 macrophages as key players in LILRs-ligand interaction in kidney transplantation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa