Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(2): 982-996, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629257

RESUMO

The ability to restrict gene expression to a relevant bacterial species in a complex microbiome is an unsolved problem. In the context of the human microbiome, one desirable target metabolic activity are glucuronide-utilization enzymes (GUS) that are implicated in the toxic re-activation of glucuronidated compounds in the human gastrointestinal (GI) tract, including the chemotherapeutic drug irinotecan. Here, we take advantage of the variable distribution of GUS enzymes in bacteria as a means to distinguish between bacteria with GUS activity, and re-purpose the glucuronide-responsive GusR transcription factor as a biosensor to regulate dCas9 expression in response to glucuronide inducers. We fused the Escherichia coli gusA regulatory region to the dCas9 gene to create pGreg-dCas9, and showed that dCas9 expression is induced by glucuronides, but not other carbon sources. When conjugated from E. coli to Gammaproteobacteria derived from human stool, dCas9 expression from pGreg-dCas9 was restricted to GUS-positive bacteria. dCas9-sgRNAs targeted to gusA specifically down-regulated gus operon transcription in Gammaproteobacteria, with a resulting ∼100-fold decrease in GusA activity. Our data outline a general strategy to re-purpose bacterial transcription factors responsive to exogenous metabolites for precise ligand-dependent expression of genetic tools such as dCas9 in diverse bacterial species.


Assuntos
Bactérias , Proteína 9 Associada à CRISPR , Glucuronídeos , Óperon , Humanos , Bactérias/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Regulação da Expressão Gênica , Glucuronídeos/metabolismo , Fatores de Transcrição/genética , Proteína 9 Associada à CRISPR/genética
2.
Nat Commun ; 14(1): 5514, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679324

RESUMO

The CRISPR/Cas9 nuclease from Streptococcus pyogenes (SpCas9) can be used with single guide RNAs (sgRNAs) as a sequence-specific antimicrobial agent and as a genome-engineering tool. However, current bacterial sgRNA activity models struggle with accurate predictions and do not generalize well, possibly because the underlying datasets used to train the models do not accurately measure SpCas9/sgRNA activity and cannot distinguish on-target cleavage from toxicity. Here, we solve this problem by using a two-plasmid positive selection system to generate high-quality data that more accurately reports on SpCas9/sgRNA cleavage and that separates activity from toxicity. We develop a machine learning architecture (crisprHAL) that can be trained on existing datasets, that shows marked improvements in sgRNA activity prediction accuracy when transfer learning is used with small amounts of high-quality data, and that can generalize predictions to different bacteria. The crisprHAL model recapitulates known SpCas9/sgRNA-target DNA interactions and provides a pathway to a generalizable sgRNA bacterial activity prediction tool that will enable accurate antimicrobial and genome engineering applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Confiabilidade dos Dados , Endonucleases , Aprendizado de Máquina
3.
ACS Synth Biol ; 12(12): 3578-3590, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38049144

RESUMO

Metagenomic sequences represent an untapped source of genetic novelty, particularly for conjugative systems that could be used for plasmid-based delivery of Cas9-derived antimicrobial agents. However, unlocking the functional potential of conjugative systems purely from metagenomic sequences requires the identification of suitable candidate systems as starting scaffolds for de novo DNA synthesis. Here, we developed a bioinformatics approach that searches through the metagenomic "trash bin" for genes associated with conjugative systems present on contigs that are typically excluded from common metagenomic analysis pipelines. Using a human metagenomic gut data set representing 2805 taxonomically distinct units, we identified 1598 contigs containing conjugation genes with a differential distribution in human cohorts. We synthesized de novo an entire Citrobacter spp. conjugative system of 54 kb containing at least 47 genes and assembled it into a plasmid, pCitro. We found that pCitro conjugates from Escherichia coli to Citrobacter rodentium with a 30-fold higher frequency than to E. coli, and is compatible with Citrobacter resident plasmids. Mutations in the traV and traY conjugation components of pCitro inhibited conjugation. We showed that pCitro can be repurposed as an antimicrobial delivery agent by programming it with the TevCas9 nuclease and Citrobacter-specific sgRNAs to kill C. rodentium. Our study reveals a trove of uncharacterized conjugative systems in metagenomic data and describes an experimental framework to animate these large genetic systems as novel target-adapted delivery vectors for Cas9-based editing of bacterial genomes.


Assuntos
Anti-Infecciosos , Escherichia coli , Humanos , Escherichia coli/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Conjugação Genética/genética , Plasmídeos/genética
4.
PeerJ ; 10: e13607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811822

RESUMO

Phaeodactylum tricornutum is a marine diatom with a growing genetic toolbox available and is being used in many synthetic biology applications. While most of the genome has been assembled, the currently available genome assembly is not a completed telomere-to-telomere assembly. Here, we used Oxford Nanopore long reads to build a telomere-to-telomere genome for Phaeodactylum tricornutum. We developed a graph-based approach to extract all unique telomeres, and used this information to manually correct assembly errors. In total, we found 25 nuclear chromosomes that comprise all previously assembled fragments, in addition to the chloroplast and mitochondrial genomes. We found that chromosome 19 has filtered long-read coverage and a quality estimate that suggests significantly less haplotype sequence variation than the other chromosomes. This work improves upon the previous genome assembly and provides new opportunities for genetic engineering of this species, including creating designer synthetic chromosomes.


Assuntos
Diatomáceas , Genoma Mitocondrial , Diatomáceas/genética , Genoma Mitocondrial/genética , Telômero/genética
5.
Sci Rep ; 12(1): 7010, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487958

RESUMO

The worldwide COVID-19 pandemic caused by the SARS-CoV-2 betacoronavirus has highlighted the need for a synthetic biology approach to create reliable and scalable sources of viral antigen for uses in diagnostics, therapeutics and basic biomedical research. Here, we adapt plasmid-based systems in the eukaryotic microalgae Phaeodactylum tricornutum to develop an inducible overexpression system for SARS-CoV-2 proteins. Limiting phosphate and iron in growth media induced expression of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein from the P. tricornutum HASP1 promoter in the wild-type strain and in a histidine auxotrophic strain that alleviates the requirement for antibiotic selection of expression plasmids. The RBD was purified from whole cell extracts (algae-RBD) with yield compromised by the finding that 90-95% of expressed RBD lacked the genetically encoded C-terminal 6X-histidine tag. Constructs that lacked the TEV protease site between the RBD and C-terminal 6X-histidine tag retained the tag, increasing yield. Purified algae-RBD was found to be N-linked glycosylated by treatment with endoglycosidases, was cross-reactive with anti-RBD polyclonal antibodies, and inhibited binding of recombinant RBD purified from mammalian cell lines to the human ACE2 receptor. We also show that the algae-RBD can be used in a lateral flow assay device to detect SARS-CoV-2 specific IgG antibodies from donor serum at sensitivity equivalent to assays performed with RBD made in mammalian cell lines. Our study shows that P. tricornutum is a scalable system with minimal biocontainment requirements for the inducible production of SARS-CoV-2 or other coronavirus antigens for pandemic diagnostics.


Assuntos
COVID-19 , Diatomáceas , Animais , COVID-19/diagnóstico , Diatomáceas/genética , Diatomáceas/metabolismo , Histidina , Humanos , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , Pandemias , Fosfatos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa