Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(3): 684-694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995855

RESUMO

BACKGROUND: Risk factors of asthma-like symptoms in childhood may act through an increased infection burden because infections often trigger these symptoms. OBJECTIVE: We sought to investigate whether the effect of established risk factors of asthma-like episodes in early childhood is mediated through burden and subtypes of common infections. METHODS: The study included 662 children from the Copenhagen Prospective Studies on Asthma in Childhood 2010 mother-child cohort, in which infections were registered prospectively in daily diaries from age 0 to 3 years. The association between established risk factors of asthma-like episodes and infection burden was analyzed by quasi-Poisson regressions, and mediation analyses were performed for significant risk factors. RESULTS: In the first 3 years of life, the children experienced a median of 16 (interquartile range, 12-23) infectious episodes. We found that the infection burden significantly (PACME < .05) mediated the association of maternal asthma (36.6% mediated), antibiotics during pregnancy (47.3%), siblings at birth (57.7%), an asthma exacerbation polygenic risk score (30.6%), and a bacterial airway immune score (80.2%) with number of asthma-like episodes, whereas the higher number of episodes from male sex, low birth weight, low gestational age, and maternal antibiotic use after birth was not mediated through an increased infection burden. Subtypes of infections driving the mediation were primarily colds, pneumonia, gastroenteritis, and fever, but not acute otitis media or acute tonsillitis. CONCLUSIONS: Several risk factors of asthma-like symptoms in early childhood act through an increased infection burden in the first 3 years of life. Prevention of infectious episodes may therefore be beneficial to reduce the burden of asthma-like symptoms in early childhood.


Assuntos
Asma , Pneumonia , Recém-Nascido , Feminino , Gravidez , Humanos , Masculino , Pré-Escolar , Lactente , Estudos Prospectivos , Asma/etiologia , Fatores de Risco , Antibacterianos/uso terapêutico , Pneumonia/tratamento farmacológico , Sons Respiratórios
2.
Artigo em Inglês | MEDLINE | ID: mdl-38825025

RESUMO

BACKGROUND: Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs), and leukotrienes with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. This study aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease. METHODS: This study quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) (age 1 year, n = 450) and VDAART (Vitamin D Antenatal Asthma Reduction Trial) (age 3 years, n = 575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of type-2 inflammation, applying false discovery rate of 5% (FDR5%) multiple testing correction. RESULTS: In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P < FDR5%) and type-2 inflammation (P < .05). In VDAART, lower PGE2 and PGI2 eicosanoids and higher isoprostanes were also associated with increased risk of atopic dermatitis (P < FDR5%). For wheeze/asthma, analyses in COPSAC2010 showed that lower isoprostanes and PGF2 eicosanoids and higher PGD2 eicosanoids at age 1 year associated with an increased risk at age 1-10 years (P < .05), whereas analyses in VDAART showed that lower PGE2 and higher TXA2 eicosanoids at age 3 years associated with an increased risk at 6 years (P < FDR5%). CONCLUSIONS: This study suggests that early life perturbations in the eicosanoid metabolism are present before the onset of atopic disease in childhood, which provides pathophysiological insight in the inception of atopic diseases.

3.
Eur Respir J ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811044

RESUMO

BACKGROUND: High BMI is an established risk factor for asthma, but the underlying mechanisms remain unclear.Objective: To increase understanding of the BMI-asthma relationship by studying the association between genetic predisposition to higher body mass index (BMI) and asthma, infections, and other asthma-traits during childhood. METHODS: Data was obtained from the two ongoing COPSAC mother-child cohorts. Polygenic risk score (PRS) for adult BMI were calculated for each child. Replication was done in the large-scale iPSYCH cohort using data on hospitalization for asthma and infections. RESULTS: In the COPSAC cohorts (n=974), the adult BMI PRS was significantly associated with lower respiratory tract infections (LRTI) (IRR 1.20 95% CI 1.08-1.33, FDR=0.005) age 0-3 years and episodes of severe wheeze (IRR 1.30, 1.06-1.60, FDR=0.04) age 0-6 years. LRTI partly mediated the association between the adult BMI PRS and severe wheeze (proportion mediated: 0.59, 0.28-2.24, pACME 2E-16). In contrast, these associations were not mediated through the child's current BMI and the PRS was not associated with an asthma diagnosis or reduced lung function up to age 18. The associations were replicated in iPSYCH (n=114 283), where the adult BMI PRS significantly increased the risk of hospitalizations for LRTI and wheeze or asthma during childhood to age 18 years. CONCLUSION: Children with genetic predisposition to higher BMI had increased risk of LRTI and severe wheeze, independent of the child's current BMI. These results shed further light on the complex relationship between BMI and asthma.

4.
Pediatr Allergy Immunol ; 35(6): e14184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924159

RESUMO

Asthma is the most common chronic disease in childhood affecting the daily lives of many patients despite current treatment regimens. Therefore, the need for new therapeutic approaches is evident, where a primary prevention strategy is the ultimate goal. Studies of children born to mothers in farming environments have shown a lower risk of respiratory infections and asthma development. Already at birth, these newborns have demonstrated accelerated maturation and upregulation of host defense immune functions suggesting a prenatal transplacental training of the innate immune system through maternal microbial exposure. This mechanism could possibly be utilized to help prevent both respiratory infections and asthma in young children. Human studies exploring the potential preventative effects of pregnancy bacterial lysate treatment on asthma and respiratory infections are lacking, however, this has been studied in experimental studies using mice through administrations of the bacterial lysate OM-85. This review will present the current literature on the immunomodulatory effects relevant for respiratory infections and asthma in the offspring of mice treated with OM-85 throughout pregnancy. Further, the review will discuss the cellular and molecular mechanisms behind these effects. In conclusion, we found promising results of an accelerated immune competence and improved resistance to airway challenges as a result of prenatal bacterial lysate treatment that may pave the way for implementing this in human trials to prevent asthma and respiratory infections.


Assuntos
Asma , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Infecções Respiratórias , Animais , Asma/prevenção & controle , Asma/imunologia , Gravidez , Feminino , Humanos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/imunologia , Camundongos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Extratos Celulares/uso terapêutico , Lisados Bacterianos
5.
J Allergy Clin Immunol ; 152(6): 1646-1657.e11, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37558060

RESUMO

BACKGROUND: Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE: We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS: Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS: In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS: This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.


Assuntos
Asma , Vitamina D , Pré-Escolar , Feminino , Humanos , Gravidez , Metaboloma , Estudos Prospectivos , Sons Respiratórios , Esfingomielinas , Ensaios Clínicos como Assunto
6.
J Infect Dis ; 227(3): 448-456, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927195

RESUMO

BACKGROUND: We hypothesized that insufficient intake of fish oil-derived omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) during pregnancy is a contributing factor to gastroenteritis in early childhood. We examined the effect of n-3 LCPUFA supplementation on gastroenteritis symptoms in the offspring's first 3 years of life. METHODS: This was a double-blinded, randomized controlled trial whereby 736 mothers were administered n-3 LCPUFA or control from pregnancy week 24 until 1 week after birth. We measured the number of days with gastroenteritis, number of episodes with gastroenteritis, and the risk of having a gastroenteritis episode in the first 3 years of life. RESULTS: A median reduction of 2.5 days with gastroenteritis (P = .018) was shown, corresponding to a 14% reduction in the n-3 LCPUFA group compared with controls in the first 3 years of life (P = .037). A reduction in the number of gastroenteritis episodes (P = .027) and a reduced risk of having an episode (hazard ratio, 0.80 [95% confidence interval, .66-.97]; P = .023) were also shown. CONCLUSIONS: Fish oil supplementation from the 24th week of pregnancy led to a reduction in the number of days and episodes with gastroenteritis symptoms in the first 3 years of life. The findings suggest n-3 LCPUFA supplementation as a preventive measure against gastrointestinal infections in early childhood. CLINICAL TRIALS REGISTRATION: NCT00798226.


Assuntos
Ácidos Graxos Ômega-3 , Gastroenterite , Gravidez , Feminino , Pré-Escolar , Humanos , Óleos de Peixe/uso terapêutico , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Gastroenterite/prevenção & controle
7.
Thorax ; 78(12): 1168-1174, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696621

RESUMO

BACKGROUND: We recently conducted a double-blinded randomised controlled trial showing that fish-oil supplementation during pregnancy reduced the risk of persistent wheeze or asthma in the child by 30%. Here, we explore the mechanisms of the intervention. METHODS: 736 pregnant women were given either placebo or n-3 long-chain polyunsaturated fatty acids (LCPUFAs) in the third trimester in a randomised controlled trial. Deep clinical follow-up of the 695 children in the trial was done at 12 visits until age 6 years, including assessment of genotype at the fatty acid desaturase (FADS) locus, plasma fatty acids, airway DNA methylation, gene expression, microbiome and metabolomics. RESULTS: Supplementation with n-3 LCPUFA reduced the overall risk of non-atopic asthma by 73% at age 6 (relative risk (RR) 0.27 (95% CI 0.06 to 0.85), p=0.042). In contrast, there was no overall effect on asthma with atopic traits (RR 1.42 (95% CI 0.63 to 3.38), p=0.40), but this was significantly modified by maternal FADS genotype and LCPUFA blood levels (interaction p<0.05), and supplementation did reduce the risk of atopic asthma in the subgroup of mothers with FADS risk variants and/or low blood levels of n-3 LCPUFA before the intervention (RR 0.31 (95% CI 0.11 to 0.75), p=0.016). Furthermore, n-3 LCPUFA significantly reduced the number of infections (croup, gastroenteritis, tonsillitis, otitis media and pneumonia) by 16% (incidence rate ratio 0.84 (95% CI 0.74 to 0.96), p=0.009). CONCLUSIONS: n-3 LCPUFA supplementation in pregnancy showed protective effects on non-atopic asthma and infections. Protective effects on atopic asthma depended on maternal FADS genotype and n-3 LCPUFA levels. This indicates that the fatty acid pathway is involved in multiple mechanisms affecting the risk of asthma subtypes and infections. TRIAL REGISTRATION NUMBER: NCT00798226.


Assuntos
Asma , Ácidos Graxos Ômega-3 , Criança , Feminino , Humanos , Gravidez , Óleos de Peixe/uso terapêutico , Suplementos Nutricionais , Asma/prevenção & controle , Ácidos Graxos
8.
Allergy ; 78(2): 429-438, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36254396

RESUMO

BACKGROUND: Intake of fish-oil and fatty fish during pregnancy has been shown to reduce the risk of childhood asthma but biomarkers of such intake are lacking. OBJECTIVE: To establish biomarkers of prenatal fish-oil exposure from newborn dry blood spot metabolomics profiles and assess their relevance for childhood asthma risk stratification. METHODS: The Danish COPSAC2010 mother-child cohort was utilized to investigate the effect of a double-blinded randomized controlled trial of fish-oil supplementation during pregnancy on dry blood spot liquid-chromatography mass spectrometry-based metabolomics profiles of 677 newborns. We thereafter investigated the association between fish-oil associated biomarkers in the newborn and development of asthma-related outcomes. Replication was sought in the independent observational COPSAC2000 cohort with 387 newborn metabolomics profiles. RESULTS: The newborn metabolomics profiles differed between children in the fish-oil vs. placebo group in COPSAC2010 (area under the receiver operator curve = 0.94 ± 0.03, p < .001). The fish-oil metabolomics profile and the top biomarker, 3-carboxy-4-methyl-5-propyl-2-furan propanoic acid (CMPF) were both associated with a decreased risk of asthma by age 6 years (HR = 0.89, p = .002 and HR = 0.67, p = .005, respectively). In COPSAC2000 , newborn CMPF level was also inversely associated with asthma risk by age 6 years (HR = 0.69, p = .01). Troublesome lung symptoms and common infections in the first 3 years were also inversely associated with newborn CMPF levels in both cohorts. CONCLUSIONS: Newborn children's blood levels of the furan fatty acid metabolite CMPF reflect fish-oil and fatty fish intake during pregnancy and are associated with a lower risk of asthma across two cohorts, which could aid newborn screening for childhood asthma.


Assuntos
Asma , Ácidos Graxos , Gravidez , Feminino , Animais , Óleos de Peixe , Asma/diagnóstico , Asma/epidemiologia , Asma/tratamento farmacológico , Furanos , Biomarcadores , Suplementos Nutricionais
9.
Pediatr Allergy Immunol ; 34(7): e13984, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37492917

RESUMO

Asthma is the most common chronic disease in childhood and a rise in prevalence has been observed concomitantly with changing dietary habits in the Western world. This change has favored a more Westernized diet characterized by high intake of processed food and fat in contrast to a Mediterranean diet high in fruit, vegetable and fish intake. This has resulted in a decreased intake of several antioxidants and micronutrients including n-3 long-chained polyunsaturated fatty acids and vitamin D that are speculated to have anti-inflammatory effects and hold immunoregulatory properties. Several observational studies have investigated associations between dietary intake and wheeze and asthma but only few large well-conducted randomized controlled trials (RCTs) have been performed investigating the primary preventive effect of micronutrient supplementations. Currently, the recommendations from the Global Initiative for Asthma (GINA) for primary prevention of asthma in children do not include maternal dietary changes or supplementations during pregnancy, although the most recent report mentions both specific dietary patterns and micronutrients as potential protective supplementation regimes. This review will present the current literature and future research needs focusing on primary and secondary prevention of both early and late childhood asthma from dietary intake during pregnancy and early childhood to highlight potential preventive effects of specific dietary patterns and micronutrient supplements, which may facilitate the planning of future clinical trials in search of a preemptive strategy.


Assuntos
Asma , Ácidos Graxos Ômega-3 , Gravidez , Feminino , Animais , Humanos , Suplementos Nutricionais , Dieta , Asma/epidemiologia , Asma/prevenção & controle , Antioxidantes , Micronutrientes
10.
Pediatr Allergy Immunol ; 34(2): e13917, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36825739

RESUMO

BACKGROUND: Evidence suggests maternal pregnancy dietary intake and nutrition in the early postnatal period to be of importance for the newborn child's health. However, studies investigating diet-related metabolites transferred from mother to child on disease risk in childhood are lacking. We sought to investigate the influence of vertically transferred metabolites on risk of atopic diseases and infections during preschool age. METHODS: In the Danish population-based COPSAC2010 mother-child cohort, information on 10 diet-related vertically transferred metabolites from metabolomics profiles of dried blood spots (DBS) at age 2-3 days was analyzed in relation to the risk of childhood asthma, allergy, eczema, and infections using principal component and single metabolite analyses. RESULTS: In 678 children with DBS measurements, a coffee-related metabolite profile reflected by principal component 1 was inversely associated with risk of asthma (odds ratio (95% CI) 0.78 (0.64; 0.95), p = .014) and eczema at age 6 years (0.79 (0.65; 0.97), p = .022). Furthermore, increasing stachydrine (fruit-related), 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (fish-related), and ergothioneine (fruit-, green vegetables-, and fish-related) levels were all significantly associated with reduced risks of infections at age 0-3 years (p < .05). CONCLUSION: This study demonstrates associations between pregnancy diet-related vertically transferred metabolites measured in children in early life and risk of atopic diseases and infections in childhood. The specific metabolites associated with a reduced disease risk in children may contribute to the characterization of a healthy nutritional profile in pregnancy using a metabolomics-based unbiased tool for predicting childhood health.


Assuntos
Asma , Eczema , Hipersensibilidade , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Pré-Escolar , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Asma/epidemiologia , Eczema/epidemiologia , Dieta
11.
Am J Respir Crit Care Med ; 203(7): 853-863, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535020

RESUMO

Rationale: A link among sphingolipids, 17q21 genetic variants, and childhood asthma has been suggested, but the underlying mechanisms and characteristics of such an asthma endotype remain to be elucidated.Objectives: To study the sphingolipid-associated childhood asthma endotype using multiomic data.Methods: We used untargeted liquid chromatography-mass spectrometry plasma metabolomic profiles at the ages of 6 months and 6 years from more than 500 children in the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood) birth cohort focusing on sphingolipids, and we integrated the 17q21 genotype and nasal gene expression of SPT (serine palmitoyl-CoA transferase) (i.e., the rate-limiting enzyme in de novo sphingolipid synthesis) in relation to asthma development and lung function traits from infancy until the age 6 years. Replication was sought in the independent VDAART (Vitamin D Antenatal Asthma Reduction Trial) cohort.Measurements and Main Results: Lower concentrations of ceramides and sphingomyelins at the age of 6 months were associated with an increased risk of developing asthma before age 3, which was also observed in VDAART. At the age of 6 years, lower concentrations of key phosphosphingolipids (e.g., sphinganine-1-phosphate) were associated with increased airway resistance. This relationship was dependent on the 17q21 genotype and nasal SPT gene expression, with significant interactions occurring between the genotype and the phosphosphingolipid concentrations and between the genotype and SPT expression, in which lower phosphosphingolipid concentrations and reduced SPT expression were associated with increasing numbers of at-risk alleles. However, the findings did not pass the false discovery rate threshold of <0.05.Conclusions: This exploratory study suggests the existence of a childhood asthma endotype with early onset and increased airway resistance that is characterized by reduced sphingolipid concentrations, which are associated with 17q21 genetic variants and expression of the SPT enzyme.


Assuntos
Asma/genética , Asma/metabolismo , Asma/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Fatores Etários , Criança , Estudos de Coortes , Replicação do DNA , Feminino , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Fenótipo , Estudos Prospectivos , Testes de Função Respiratória , Fatores de Risco , Suécia
12.
Eur Respir J ; 58(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653805

RESUMO

BACKGROUND: Prenatal vitamin D3 supplementation has been linked to reduced risk of early-life asthma/recurrent wheeze. This protective effect appears to be influenced by variations in the 17q21 functional single nucleotide polymorphism rs12936231 of the child, which regulates the expression of ORMDL3 (ORM1-like 3) and for which the high-risk CC genotype is associated with early-onset asthma. However, this does not fully explain the differential effects of supplementation. We investigated the influence of maternal rs12936231 genotype variation on the protective effect of prenatal vitamin D3 supplementation against offspring asthma/recurrent wheeze. METHODS: We determined the rs12936231 genotype of mother-child pairs from two randomised controlled trials: the Vitamin D Antenatal Asthma Reduction Trial (VDAART, n=613) and the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC2010, n=563), to examine the effect of maternal genotype variation on offspring asthma/recurrent wheeze at age 0-3 years between groups who received high-dose prenatal vitamin D3 supplementation versus placebo. RESULTS: Offspring of mothers with the low-risk GG or GC genotype who received high-dose vitamin D3 supplementation had a significantly reduced risk of asthma/recurrent wheeze when compared with the placebo group (hazard ratio (HR) 0.54, 95% CI 0.37-0.77; p<0.001 for VDAART and HR 0.56, 95% CI 0.35-0.92; p=0.021 for COPSAC2010), whereas no difference was observed among the offspring of mothers with the high-risk CC genotype (HR 1.05, 95% CI 0.61-1.84; p=0.853 for VDAART and HR 1.11, 95% CI 0.54-2.28; p=0.785 for COPSAC2010). CONCLUSION: Maternal 17q21 genotype has an important influence on the protective effects of prenatal vitamin D3 supplementation against offspring asthma/recurrent wheeze.


Assuntos
Asma , Vitamina D , Asma/genética , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Gravidez , Estudos Prospectivos , Sons Respiratórios/genética
13.
Pediatr Allergy Immunol ; 32(4): 679-689, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33453076

RESUMO

BACKGROUND: Randomized controlled trials (RCTs) suggest a protective effect of high-dose vitamin D supplementation in pregnancy on offspring risk of persistent wheeze, but only in some individuals, which might be explained by variations in vitamin D pathway genes. This study aimed to investigate the effect of vitamin D supplementation by maternal and offspring vitamin D receptor (VDR) genotype and GC genotype, encoding vitamin D binding protein (VDBP), in two RCTs. METHODS: In the Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2010 ) RCT, we analyzed the effect of high-dose vitamin D during pregnancy on the risk of persistent wheeze age 0-3 years by variants in single nucleotide polymorphisms (SNPs) in VDR (rs1544410, rs2228570, rs7975128, rs7975232) and GC (rs4588, rs7041). Replication was sought in the Vitamin D Antenatal Asthma Reduction Trial (VDAART). RESULTS: In COPSAC2010 , VDR SNP rs1544410 influenced the effect of high-dose vitamin D: maternal Pinteraction  = .049 and child Pinteraction  = .001, with the largest effect in offspring from mothers with TT genotype: hazard ratio (95% CI), 0.26 (0.10-0.68), P = .006, and no effect among CT or CC genotypes: 0.85 (0.48-1.51), P = .58 and 0.94 (0.47-1.89), P = .87, respectively. However, these findings were not replicated in VDAART. There was no significant effect modification from maternal or offspring GC genotype in either COPSAC2010 or VDAART: all Pinteraction  ≥ .17. CONCLUSIONS: We found that the effect of high-dose vitamin D supplementation during pregnancy on offspring risk of persistent wheeze was significantly influenced by VDR genotype in the COPSAC2010 RCT, but not VDAART, which may be due to population differences.


Assuntos
Asma , Vitamina D , Asma/genética , Asma/prevenção & controle , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Recém-Nascido , Polimorfismo de Nucleotídeo Único , Gravidez , Receptores de Calcitriol/genética , Sons Respiratórios/genética , Proteína de Ligação a Vitamina D/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-38360214

RESUMO

Respiratory infections are a leading cause of child morbidity worldwide, and asthma is the most common chronic disorder in childhood. Both conditions associate with high socioeconomic costs and are major reasons for medication prescriptions and hospitalizations in children. Vitamin D deficiency has concomitantly increased with asthma prevalence and is hypothesized to play a key role in the development. Current evidence suggests that high prenatal and early childhood vitamin D could be protective against respiratory infections and asthma in some studies where several mechanisms are proposed. However, other studies have reported no effects on these outcomes. Therefore, future large intervention studies on this topic are warranted. Mechanistic studies have shown that vitamin D holds antimicrobial properties by inducing production of several peptides through altered gene expression. Others have shown a complex interplay between asthma risk genotypes, the sphingolipid pathway, and prenatal vitamin D in early childhood asthma. Vitamin D has also been suggested to change both airway immune and microbiota profiles, which are directly related to asthma risk. Finally, systemic low-grade inflammation seems to be regulated by vitamin D exposure. This review presents the current literature of the primary preventive effect of vitamin D on early childhood asthma and respiratory infections. Mechanisms of actions are discussed, and gaps in knowledge are highlighted to facilitate planning of future intervention trials.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38609018

RESUMO

BACKGROUND: Early life respiratory tract infections have been linked to the development of asthma, but studies on the burden and subtypes of common infections in asthma development are sparse. OBJECTIVE: To examine the association between burden of early life infections, including subtypes, with the risk of asthma from age 3 to 10 years and lung function at age 10 years. METHODS: We included 662 children from the Copenhagen Prospective Studies on Asthma in Childhood 2010 birth cohort, for whom infections such as colds, acute tonsillitis, acute otitis media, pneumonia, gastroenteritis, and fever were registered prospectively in daily diaries at age 0 to 3 years and asthma was diagnosed longitudinally from age 3 to 10 years. The association between the burden of infection and subtypes and risk of asthma was analyzed by generalized estimating equations. RESULTS: The children experienced a median of 16 infections (interquartile range, 12-23 infections) at age 0 to 3 years. Children with a high burden of infections (above the median) had an increased risk of asthma at age 3 to 10 years (adjusted odds ratio = 3.61; 95% CI, 2.39-5.45; P < .001), which was driven by colds, pneumonia, gastroenteritis, and fever episodes (P < .05) but not by acute otitis media and tonsillitis. Lower lung function measures at age 10 years were associated with the burden of pneumonia but not the overall infection burden. The association between colds and the risk of asthma was significantly higher in children with allergic rhinitis at age 6 years (P interaction = .032). CONCLUSION: A high burden of early life infections in terms of colds, pneumonia, gastroenteritis, and fever is associated with an increased risk of developing asthma, particularly in children with respiratory allergy. Strategies to diminish these early life infections may offer a path for the primary prevention of childhood asthma.

19.
Nutrients ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337692

RESUMO

We previously demonstrated a beneficial effect of high-dose vitamin D in pregnancy on offspring bone and dental health. Here, we investigated the effect of maternal dietary patterns during pregnancy on the risk of bone fractures, bone mineralization and enamel defects until age 6 years in the offspring. Further, the influence of diet on the effect of high-dose vitamin D was analyzed in the COPSAC2010 mother-child cohort including 623 mother-child pairs. A weighted network analysis on FFQs revealed three specific maternal dietary patterns that associated (Bonferroni p < 0.05) with both offspring bone and dental health. The effect of prenatal high-dose (2800 IU/day) vs. standard-dose (400 IU/day) vitamin D on offspring bone mineral content (adjusted mean difference (aMD): 33.29 g, 95% CI: 14.48-52.09, p < 0.001), bone mineral density (aMD: 0.02 g/cm2 (0.01-0.04), p < 0.001), fracture risk (adjusted incidence rate ratio: 0.36 (0.16-0.84), p = 0.02), and enamel defects in primary (adjusted odds ratio (aOR): 0.13 (0.03-0.58), p < 0.01) and permanent molars (aOR: 0.25; (0.10-0.63), p < 0.01) was most pronounced when mothers had lower intake of fruit, vegetables, meat, eggs, sweets, whole grain, offal and fish. This study suggests that prenatal dietary patterns influence offspring bone and dental development, and should be considered in order to obtain the full benefits of vitamin D to enhance personalized supplementation strategy.


Assuntos
Fraturas Ósseas , Vitamina D , Gravidez , Feminino , Animais , Humanos , Criança , Calcificação Fisiológica , Dieta , Vitaminas/farmacologia , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/etiologia , Fraturas Ósseas/prevenção & controle , Densidade Óssea , Suplementos Nutricionais , Esmalte Dentário
20.
Metabolites ; 14(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38535296

RESUMO

Vertical transmission of metabolic constituents from mother to child contributes to the manifestation of disease phenotypes in early life. This study probes the vertical transmission of metabolites from mothers to offspring by utilizing machine learning techniques to differentiate between true mother-child dyads and randomly paired non-dyads. Employing random forests (RF), light gradient boosting machine (LGBM), and logistic regression (Elasticnet) models, we analyzed metabolite concentration discrepancies in mother-child pairs, with maternal plasma sampled at 24 weeks of gestation and children's plasma at 6 months. The propensity of vertical transfer was quantified, reflecting the likelihood of accurate mother-child matching. Our findings were substantiated against an external test set and further verified through statistical tests, while the models were explained using permutation importance and SHapley Additive exPlanations (SHAP). The best model was achieved using RF, while xenobiotics were shown to be highly relevant in transfer. The study reaffirms the transmission of certain metabolites, such as perfluorooctanoic acid (PFOA), but also reveals additional insights into the maternal influence on the child's metabolome. We also discuss the multifaceted nature of vertical transfer. These machine learning-driven insights complement conventional epidemiological findings and offer a novel perspective on using machine learning as a methodology for understanding metabolic interactions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa