Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801745

RESUMO

The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in plants. To investigate the functions of the six maize (Zea mays) COI proteins (COI1a, COI1b, COI1c, COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The pollen of the coi2a coi2b double mutant was inviable. The coi1 quadruple mutant (coi1-4x) exhibited shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and accumulation of DWARF8 and/or DWARF9, two DELLA family proteins that repress the gibberellic acid signaling pathway. Co-expression of COI and DELLA in Nicotiana benthamiana showed that the COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in the coi1-4x mutant are gibberellic acid-inducible. In addition, most of the proteins encoded by the downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding C4-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana showed that COI2a is nucleus-localized and interacts with maize jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins, the canonical COI repressor partners. However, maize COI1a and COI1c showed only partial nuclear localization and reduced binding efficiency to the tested JAZ proteins. Together, these results show the divergent functions of the six COI proteins in regulating maize growth and defense pathways.

2.
Plant Cell ; 35(8): 2848-2870, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37154077

RESUMO

C3 and C4 grasses directly and indirectly provide the vast majority of calories to the human diet, yet our understanding of the molecular mechanisms driving photosynthetic productivity in grasses is largely unexplored. Ground meristem cells divide to form mesophyll or vascular initial cells early in leaf development in C3 and C4 grasses. Here we define a genetic circuit composed of SHORT ROOT (SHR), INDETERMINATE DOMAIN (IDD), and PIN-FORMED (PIN) family members that specifies vascular identify and ground cell proliferation in leaves of both C3 and C4 grasses. Ectopic expression and loss-of-function mutant studies of SHR paralogs in the C3 plant Oryza sativa (rice) and the C4 plant Setaria viridis (green millet) revealed the roles of these genes in both minor vein formation and ground cell differentiation. Genetic and in vitro studies further suggested that SHR regulates this process through its interactions with IDD12 and 13. We also revealed direct interactions of these IDD proteins with a putative regulatory element within the auxin transporter gene PIN5c. Collectively, these findings indicate that a SHR-IDD regulatory circuit mediates auxin transport by negatively regulating PIN expression to modulate minor vein patterning in the grasses.


Assuntos
Oryza , Setaria (Planta) , Humanos , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Setaria (Planta)/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica de Plantas/genética
3.
Plant J ; 109(3): 523-540, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750914

RESUMO

The translocation of photosynthate carbohydrates, such as sucrose, is critical for plant growth and crop yield. Previous studies have revealed that sugar transporters, plasmodesmata and sieve plates act as important controllers in sucrose loading into and unloading from phloem in the vascular system. However, other pivotal steps for the regulation of sucrose movement remain largely elusive. In this study, characterization of two starch excesses in mesophyll (sem) mutants and dye and sucrose export assays were performed to provide insights into the regulatory networks that drive source-sink relations in rice. Map-based cloning identified two allelic mutations in a gene encoding a GLUCAN SYNTHASE-LIKE (GSL) protein, thus indicating a role for SEM1 in callose biosynthesis. Subcellular localization in rice showed that SEM1 localized to the plasma membrane. In situ expression analysis and GUS staining showed that SEM1 was mainly expressed in vascular phloem cells. Reduced sucrose transport was found in the sem1-1/1-2 mutant, which led to excessive starch accumulation in source leaves and inhibited photosynthesis. Paraffin section and transmission electron microscopy experiments revealed that less-developed vascular cells (VCs) in sem1-1/1-2 potentially disturbed sugar movement. Moreover, dye and sugar trafficking experiments revealed that aberrant VC development was the main reason for the pleiotropic phenotype of sem1-1/1-2. In total, efficient sucrose loading into the phloem benefits from an optional number of VCs with a large vacuole that could act as a buffer holding tank for sucrose passing from the vascular bundle sheath.


Assuntos
Transporte Biológico/genética , Células do Mesofilo/metabolismo , Oryza/genética , Oryza/fisiologia , Floema/metabolismo , Amido/genética , Amido/metabolismo , Açúcares/metabolismo , Transporte Biológico/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas
4.
Plant Physiol ; 190(2): 1117-1133, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35876823

RESUMO

In C4 plants, the pyruvate (Pyr), phosphate dikinase regulatory protein (PDRP) regulates the activity of the C4 pathway enzyme Pyr, phosphate dikinase (PPDK) in a light-/dark-dependent manner. The importance of this regulatory action to C4 pathway function and overall C4 photosynthesis is unknown. To resolve this question, we assessed in vivo PPDK phospho-regulation and whole leaf photophysiology in a CRISPR-Cas9 PDRP knockout (KO) mutant of the NADP-ME C4 grass green millet (Setaria viridis). PDRP enzyme activity was undetectable in leaf extracts from PDRP KO lines. Likewise, PPDK phosphorylated at the PDRP-regulatory Thr residue was immunologically undetectable in leaf extracts. PPDK enzyme activity in rapid leaf extracts was constitutively high in the PDRP KO lines, irrespective of light or dark pretreatment of leaves. Gas exchange analysis of net CO2 assimilation revealed PDRP KO leaves had markedly slower light induction kinetics when leaves transition from dark to high-light or low-light to high-light. In the initial 30 min of the light induction phase, KO leaves had an ∼15% lower net CO2 assimilation rate versus the wild-type (WT). Despite the impaired slower induction kinetics, we found growth and vigor of the KO lines to be visibly indistinguishable from the WT when grown in normal air and under standard growth chamber conditions. However, the PDRP KO plants grown under a fluctuating light regime exhibited a gradual multi-day decline in Fv/Fm, indicative of progressive photosystem II damage due to the absence of PDRP. Collectively, our results demonstrate that one of PDRP's functions in C4 photosynthesis is to ensure optimal photosynthetic light induction kinetics during dynamic changes in incident light.


Assuntos
Piruvato Ortofosfato Diquinase , Setaria (Planta) , Dióxido de Carbono/metabolismo , NADP/metabolismo , Fosfatos/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Extratos Vegetais/metabolismo , Plantas/metabolismo , Piruvato Ortofosfato Diquinase/química , Ácido Pirúvico/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
5.
J Acoust Soc Am ; 152(5): 2828, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36456290

RESUMO

In 2019, the U.S. Food and Drug Administration issued guidance to increase the efficiency of drug development and support precision medicine, including tailoring treatments to those patients who will benefit based on genetic variation even in the absence of a documented mechanism of action. Although multiple advancements have been made in the field of pharmacogenetics (PGx) for other disease conditions, there are no approved PGx guidelines in the treatment of hearing disorders. In studies of noise-induced hearing loss (NIHL), some progress has been made in the last several years associating genomic loci with susceptibility to noise damage. However, the power of such studies is limited as the underlying physiological responses may vary considerably among the patient populations. Here, we have summarized previous animal studies to argue that NIHL subtyping is a promising strategy to increase the granularity of audiological assessments. By coupling this enhanced phenotyping capability with genetic association studies, we suggest that drug efficacy will be better predicted, increasing the likelihood of success in clinical trials when populations are stratified based on genetic variation or designed with multidrug combinations to reach a broader segment of individuals suffering or at risk from NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Farmacogenética , Estados Unidos , Animais , Medicina de Precisão , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/genética , Genômica , Probabilidade
6.
Plant Biotechnol J ; 19(11): 2291-2303, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34328250

RESUMO

The engineering of C4 photosynthetic activity into the C3 plant rice has the potential to nearly double rice yields. To engineer a two-cell photosynthetic system in rice, the rice bundle sheath (BS) must be rewired to enhance photosynthetic capacity. Here, we show that BS chloroplast biogenesis is enhanced when the transcriptional activator, Oryza sativa Cytokinin GATA transcription factor 1 (OsCGA1), is driven by a vascular specific promoter. Ectopic expression of OsCGA1 resulted in increased BS chloroplast planar area and increased expression of photosynthesis-associated nuclear genes (PhANG), required for the biogenesis of photosynthetically active chloroplasts in BS cells of rice. A further refinement using a DNAse dead Cas9 (dCas9) activation module driven by the same cell-type specific promoter, directed enhanced chloroplast development of the BS cells when gRNA sequences were delivered by the dCas9 module to the promoter of the endogenous OsCGA1 gene. Single gRNA expression was sufficient to mediate the transactivation of both the endogenous gene and a transgenic GUS reporter fused with OsCGA1 promoter. Our results illustrate the potential for tissue-specific dCas9-activation and the co-regulation of genes needed for multistep engineering of C4 rice.


Assuntos
Oryza , Cloroplastos/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Fotossíntese/genética , Folhas de Planta , Regiões Promotoras Genéticas/genética
7.
PLoS Genet ; 13(6): e1006841, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28644860

RESUMO

Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.


Assuntos
Ambiente Controlado , Locos de Características Quantitativas/genética , Setaria (Planta)/genética , Alelos , Biomassa , Mapeamento Cromossômico , Genoma de Planta , Genótipo , Herança Multifatorial/genética , Fenótipo , Setaria (Planta)/crescimento & desenvolvimento
8.
Plant Physiol ; 177(3): 980-989, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29794168

RESUMO

Stomata regulate transpirational water loss and CO2 uptake for photosynthesis in response to changing environmental conditions. Research investigating stomatal movement has mostly been conducted in C3 eudicot species, which have very different CO2 requirements for photosynthesis relative to C4 grasses. Carbonic anhydrase (CA) catalyzes the hydration of CO2, and its activity has been linked to stomatal aperture regulation in eudicots. The number of Ca genes and their evolutionary history differ between monocots and dicots, and many questions remain unanswered about potential neofunctionalization and subfunctionalization of grass Ca paralogs and their roles in photosynthesis and stomatal conductance. To investigate the roles of different Ca genes in maize (Zea mays), we examined stomatal responses in ca1 and ca2 single mutants as well as a ca1ca2 double mutant. The ca1 and ca2 single mutants had 10% and 87% of the CA activity exhibited by the wild type, respectively, while ca1ca2 had less than 5% of wild-type CA activity. The ca mutants had higher stomatal conductance than the wild type and slower stomatal closure in response to increases in CO2 partial pressure. Contrary to previous reports in eudicots, ca mutants showed slowed stomatal closure in response to the light-dark transition and did not show differences in stomatal density compared with the wild type. These results implicate CA-mediated signaling in the control of stomatal movement but not stomatal development. Drought experiments with ca1ca2 mutant plants suggest a role for CA in water-use efficiency and reveal that Z. mays is not optimized for water-use efficiency under well-watered conditions.


Assuntos
Anidrases Carbônicas/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Zea mays/fisiologia , Dióxido de Carbono , Anidrases Carbônicas/genética , Secas , Luz , Mutação , Folhas de Planta/fisiologia , Proteínas de Plantas/genética
9.
Plant Cell ; 28(2): 466-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26813621

RESUMO

C4 photosynthesis in grasses requires the coordinated movement of metabolites through two specialized leaf cell types, mesophyll (M) and bundle sheath (BS), to concentrate CO2 around Rubisco. Despite the importance of transporters in this process, few have been identified or rigorously characterized. In maize (Zea mays), DCT2 has been proposed to function as a plastid-localized malate transporter and is preferentially expressed in BS cells. Here, we characterized the role of DCT2 in maize leaves using Activator-tagged mutant alleles. Our results indicate that DCT2 enables the transport of malate into the BS chloroplast. Isotopic labeling experiments show that the loss of DCT2 results in markedly different metabolic network operation and dramatically reduced biomass production. In the absence of a functioning malate shuttle, dct2 lines survive through the enhanced use of the phosphoenolpyruvate carboxykinase carbon shuttle pathway that in wild-type maize accounts for ∼ 25% of the photosynthetic activity. The results emphasize the importance of malate transport during C4 photosynthesis, define the role of a primary malate transporter in BS cells, and support a model for carbon exchange between BS and M cells in maize.


Assuntos
Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Zea mays/fisiologia , Transporte Biológico , Carbono/metabolismo , Isótopos de Carbono/análise , Cloroplastos/metabolismo , Malatos/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/enzimologia , Zea mays/genética , Zea mays/ultraestrutura
10.
Plant Cell ; 28(7): 1510-20, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27335450

RESUMO

Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.


Assuntos
Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta/genética , Agrobacterium tumefaciens/genética , Produtos Agrícolas/metabolismo , DNA de Plantas/genética , Recombinação Genética/genética , Transformação Genética/genética
11.
Proc Natl Acad Sci U S A ; 113(31): 8861-6, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27422554

RESUMO

Many important crops are members of the Poaceae family, which develop root systems characterized by a high degree of root initiation from the belowground basal nodes of the shoot, termed the crown. Although this postembryonic shoot-borne root system represents the major conduit for water uptake, little is known about the effect of water availability on its development. Here we demonstrate that in the model C4 grass Setaria viridis, the crown locally senses water availability and suppresses postemergence crown root growth under a water deficit. This response was observed in field and growth room environments and in all grass species tested. Luminescence-based imaging of root systems grown in soil-like media revealed a shift in root growth from crown-derived to primary root-derived branches, suggesting that primary root-dominated architecture can be induced in S. viridis under certain stress conditions. Crown roots of Zea mays and Setaria italica, domesticated relatives of teosinte and S. viridis, respectively, show reduced sensitivity to water deficit, suggesting that this response might have been influenced by human selection. Enhanced water status of maize mutants lacking crown roots suggests that under a water deficit, stronger suppression of crown roots actually may benefit crop productivity.


Assuntos
Secas , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Água/metabolismo , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Poaceae/genética , Poaceae/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Solo , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
12.
Int J Mol Sci ; 20(10)2019 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109136

RESUMO

The morphological development of the leaf greatly influences plant architecture and crop yields. The maize leaf is composed of a leaf blade, ligule and sheath. Although extensive transcriptional profiling of the tissues along the longitudinal axis of the developing maize leaf blade has been conducted, little is known about the transcriptional dynamics in sheath tissues, which play important roles in supporting the leaf blade. Using a comprehensive transcriptome dataset, we demonstrated that the leaf sheath transcriptome dynamically changes during maturation, with the construction of basic cellular structures at the earliest stages of sheath maturation with a transition to cell wall biosynthesis and modifications. The transcriptome again changes with photosynthesis and lignin biosynthesis at the last stage of sheath tissue maturation. The different tissues of the maize leaf are highly specialized in their biological functions and we identified 15 genes expressed at significantly higher levels in the leaf sheath compared with their expression in the leaf blade, including the BOP2 homologs GRMZM2G026556 and GRMZM2G022606, DOGT1 (GRMZM2G403740) and transcription factors from the B3 domain, C2H2 zinc finger and homeobox gene families, implicating these genes in sheath maturation and organ specialization.


Assuntos
Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Zea mays/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Transcriptoma , Zea mays/crescimento & desenvolvimento
13.
J Integr Plant Biol ; 60(8): 670-690, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29664234

RESUMO

In C4 photosynthesis, pyruvate orthophosphate dikinase (PPDK) catalyzes the regeneration of phosphoenolpyruvate in the carbon shuttle pathway. Although the biochemical function of PPDK in maize is well characterized, a genetic analysis of PPDK has not been reported. In this study, we use the maize transposable elements Mutator and Ds to generate multiple mutant alleles of PPDK. Loss-of-function mutants are seedling lethal, even when plants were grown under 2% CO2 , and they show very low capacity for CO2 assimilation, indicating C4 photosynthesis is essential in maize. Using RNA-seq and GC-MS technologies, we examined the transcriptional and metabolic responses to a deficiency in PPDK activity. These results indicate loss of PPDK results in downregulation of gene expression of enzymes of the C4 cycle, the Calvin cycle, and components of photochemistry. Furthermore, the loss of PPDK did not change Kranz anatomy, indicating that this metabolic defect in the C4 cycle did not impinge on the morphological differentiation of C4 characters. However, sugar metabolism and nitrogen utilization were altered in the mutants. An interaction between light intensity and genotype was also detected from transcriptome profiling, suggesting altered transcriptional and metabolic responses to environmental and endogenous signals in the PPDK mutants.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/genética , Proteínas de Plantas/genética , Zea mays/genética
14.
J Exp Bot ; 68(2): 127-135, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27436281

RESUMO

C4 photosynthesis is perhaps one of the best examples of convergent adaptive evolution with over 25 independent origins in the grasses (Poaceae) alone. The availability of high quality grass genome sequences presents new opportunities to explore the mechanisms underlying this complex trait using evolutionary biology-based approaches. In this study, we performed genome-wide cross-species selection scans in C4 lineages to facilitate discovery of C4 genes. The study was enabled by the well conserved collinearity of grass genomes and the recently sequenced genome of a C3 panicoid grass, Dichanthelium oligosanthes This method, in contrast to previous studies, does not rely on any a priori knowledge of the genes that contribute to biochemical or anatomical innovations associated with C4 photosynthesis. We identified a list of 88 candidate genes that include both known and potentially novel components of the C4 pathway. This set includes the carbon shuttle enzymes pyruvate, phosphate dikinase, phosphoenolpyruvate carboxylase and NADP malic enzyme as well as several predicted transporter proteins that likely play an essential role in promoting the flux of metabolites between the bundle sheath and mesophyll cells. Importantly, this approach demonstrates the application of fundamental molecular evolution principles to dissect the genetic basis of a complex photosynthetic adaptation in plants. Furthermore, we demonstrate how the output of the selection scans can be combined with expression data to provide additional power to prioritize candidate gene lists and suggest novel opportunities for pathway engineering.


Assuntos
Estudo de Associação Genômica Ampla , Fotossíntese/genética , Poaceae/genética , Seleção Genética , Adaptação Biológica , Evolução Molecular , Genoma de Planta
15.
Bioinformatics ; 30(2): 197-205, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24191069

RESUMO

MOTIVATION: RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. RESULTS: In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. AVAILABILITY AND IMPLEMENTATION: An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org


Assuntos
Algoritmos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Modelos Estatísticos , Zea mays/genética , Análise por Conglomerados , Simulação por Computador , Perfilação da Expressão Gênica/métodos , Folhas de Planta/metabolismo
16.
New Phytol ; 208(1): 13-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26171760

RESUMO

Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering.


Assuntos
Clonagem Molecular/métodos , DNA , Engenharia Genética/métodos , Plantas Geneticamente Modificadas/genética , Plantas/genética , Biologia Sintética/métodos , Botânica , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Eucariotos/genética , Engenharia Genética/normas , Plasmídeos , Padrões de Referência , Transcrição Gênica
17.
Plant Physiol ; 165(2): 608-617, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706552

RESUMO

Carbonic anhydrase (CA) catalyzes the first biochemical step of the carbon-concentrating mechanism of C4 plants, and in C4 monocots it has been suggested that CA activity is near limiting for photosynthesis. Here, we test this hypothesis through the characterization of transposon-induced mutant alleles of Ca1 and Ca2 in maize (Zea mays). These two isoforms account for more than 85% of the CA transcript pool. A significant change in isotopic discrimination is observed in mutant plants, which have as little as 3% of wild-type CA activity, but surprisingly, photosynthesis is not reduced under current or elevated CO2 partial pressure (pCO2). However, growth and rates of photosynthesis under subambient pCO2 are significantly impaired in the mutants. These findings suggest that, while CA is not limiting for C4 photosynthesis in maize at current pCO2, it likely maintains high rates of photosynthesis when CO2 availability is reduced. Current atmospheric CO2 levels now exceed 400 ppm (approximately 40.53 Pa) and contrast with the low-pCO2 conditions under which C4 plants expanded their range approximately 10 million years ago, when the global atmospheric CO2 was below 300 ppm (approximately 30.4 Pa). Thus, as CO2 levels continue to rise, selective pressures for high levels of CA may be limited to arid climates where stomatal closure reduces CO2 availability to the leaf.

18.
J Exp Bot ; 66(14): 4165-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25711704

RESUMO

Growth-defence balance is the selective partitioning of resources between biomass accumulation and defence responses. Although it is generally postulated that reallocation of limited carbon pools drives the antagonism between growth and defence, little is known about the mechanisms underlying this regulation. Jasmonates (JAs) are a group of oxylipins that are required for a broad range of responses from defence against insects to reproductive growth. Application of JAs to seedlings also leads to inhibited growth and repression of photosynthesis, suggesting a role for JAs in regulating growth-defence balance. The majority of JA research uses dicot models such as Arabidopsis and tomato, while understanding of JA biology in monocot grasses, which comprise most bioenergy feedstocks, food for human consumption, and animal feed, is limited. Interestingly, JA mutants of grasses exhibit unique phenotypes compared with well-studied dicot models. Gene expression analyses in bioenergy grasses also suggest roles for JA in rhizome development, which has not been demonstrated in Arabidopsis. In this review we summarize current knowledge of JA biology in panicoid grasses-the group that consists of the world's emerging bioenergy grasses such as switchgrass, sugarcane, Miscanthus, and sorghum. We discuss outstanding questions regarding the role of JAs in panicoid grasses, and highlight the importance of utilizing emerging grass models for molecular studies to provide a basis for engineering bioenergy grasses that can maximize biomass accumulation while efficiently defending against stress.


Assuntos
Biomassa , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Poaceae/crescimento & desenvolvimento , Herbivoria , Poaceae/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
19.
J Exp Bot ; 65(13): 3371-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24659485

RESUMO

High-yielding, stress-tolerant grass crops are essential to meet future food and energy demands. Efforts are underway to engineer improved varieties of the C3 cereal crop rice by introducing NADP-malic enzyme C4 photosynthesis using maize as a model system. However, several modifications to the rice leaf vasculature are potentially necessary, including the introduction of suberin lamellae into the bundle sheath cell walls. Suberized cell walls are ubiquitous in the root endodermis of all grasses, and developmental similarities are apparent between endodermis and bundle sheath cell walls. Nonetheless, there is considerable heterogeneity in sheath cell development and suberin composition both within and between grass taxa. The effect of this variation on physiological function remains ambiguous over forty years after suberin lamellae were initially proposed to regulate solute and photoassimilate fluxes and C4 gas exchange. Interspecies variation has confounded efforts to ascribe physiological differences specifically to the presence or absence of suberin lamellae. Thus, specific perturbation of suberization within a uniform genetic background is needed, but, until recently, the genetic resources to manipulate suberin composition in the grasses were largely unavailable. The recent dissection of the suberin biosynthesis pathway in model dicots and the identification of several promising candidate genes in model grasses will facilitate the characterization of the first suberin biosynthesis genes in a monocot. Much remains to be learned about the role of bundle sheath suberization in leaf physiology, but the stage is set for significant advances in the near future.


Assuntos
Parede Celular/ultraestrutura , Regulação da Expressão Gênica de Plantas , Lipídeos/biossíntese , Feixe Vascular de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Vias Biossintéticas , Produtos Agrícolas , Regulação da Expressão Gênica no Desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Feixe Vascular de Plantas/metabolismo , Feixe Vascular de Plantas/ultraestrutura , Poaceae/metabolismo , Poaceae/ultraestrutura
20.
J Exp Bot ; 65(11): 2825-34, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24868036

RESUMO

The successful commercialization of bioenergy grasses as lignocellulosic feedstocks requires that they be produced, processed, and transported efficiently. Intensive breeding for higher yields in food crops has resulted in varieties that perform optimally under high-density planting but often with high input costs. This is particularly true of maize, where most yield gains in the past have come through increased planting densities and an abundance of fertilizer. For lignocellulosic feedstocks, biomass rather than grain yield and digestibility of cell walls are two of the major targets for improvement. Breeding for high-density performance of lignocellulosic crops has been much less intense and thus provides an opportunity for improving the feedstock potential of these grasses. In this review, we discuss the role of vegetative shade on growth and development and suggest targets for manipulating this response to increase harvestable biomass under high-density planting. To engineer grass architecture and modify biomass properties at increasing planting densities, we argue that new model systems are needed and recommend Setaria viridis, a panicoid grass, closely related to major fuel and bioenergy grasses as a model genetic system.


Assuntos
Agricultura/métodos , Luz , Modelos Biológicos , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação , Adaptação Fisiológica/efeitos da radiação , Biomassa , Poaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa