RESUMO
We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.
Assuntos
Algoritmos , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Conformação Proteica , Ligação Proteica , Simulação de Acoplamento Molecular , Biologia Computacional/métodos , SoftwareRESUMO
The Sda carbohydrate epitope and its biosynthetic B4GALNT2 enzyme are expressed in the healthy colon and down-regulated to variable extents in colon cancer. The human B4GALNT2 gene drives the expression of a long and a short protein isoform (LF-B4GALNT2 and SF-B4GALNT2) sharing identical transmembrane and luminal domains. Both isoforms are trans-Golgi proteins and the LF-B4GALNT2 also localizes to post-Golgi vesicles thanks to its extended cytoplasmic tail. Control mechanisms underpinning Sda and B4GALNT2 expression in the gastrointestinal tract are complex and not fully understood. This study reveals the existence of two unusual N-glycosylation sites in B4GALNT2 luminal domain. The first atypical N-X-C site is evolutionarily conserved and occupied by a complex-type N-glycan. We explored the influence of this N-glycan using site-directed mutagenesis and showed that each mutant had a slightly decreased expression level, impaired stability, and reduced enzyme activity. Furthermore, we observed that the mutant SF-B4GALNT2 was partially mislocalized in the endoplasmic reticulum, whereas the mutant LF-B4GALNT2 was still localized in the Golgi and post-Golgi vesicles. Lastly, we showed that the formation of homodimers was drastically impaired in the two mutated isoforms. An AlphaFold2 model of the LF-B4GALNT2 dimer with an N-glycan on each monomer corroborated these findings and suggested that N-glycosylation of each B4GALNT2 isoform controlled their biological activity.
Assuntos
Retículo Endoplasmático , Complexo de Golgi , N-Acetilgalactosaminiltransferases , Humanos , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Polissacarídeos/metabolismo , Isoformas de Proteínas/metabolismo , N-Acetilgalactosaminiltransferases/genéticaRESUMO
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas , Software , Sítios de Ligação , Simulação de Acoplamento Molecular , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de ProteínaRESUMO
ß-1,4-Galactosyltransferase 1 (B4GALT1) and ST6 ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) catalyze the successive addition of terminal ß-1,4-linked galactose and α-2,6-linked sialic acid to N-glycans. Their exclusive interaction in the Golgi compartment is a prerequisite for their full catalytic activity, whereas a lack of this interaction is associated with cancers and hypoxia. To date, no structural information exists that shows how glycosyltransferases functionally assemble with each other. Using molecular docking simulations to predict interaction surfaces, along with mutagenesis screens and high-throughput FRET analyses in live cells to validate these predictions, we show here that B4GALT1 and ST6GAL1 interact via highly charged noncatalytic surfaces, leaving the active sites exposed and accessible for donor and acceptor substrate binding. Moreover, we found that the assembly of ST6GAL1 homomers in the endoplasmic reticulum before ST6GAL1 activation in the Golgi utilizes the same noncatalytic surface, whereas B4GALT1 uses its active-site surface for assembly, which silences its catalytic activity. Last, we show that the homomeric and heteromeric B4GALT1/ST6GAL1 complexes can assemble laterally in the Golgi membranes without forming cross-cisternal contacts between enzyme molecules residing in the opposite membranes of each Golgi cisterna. Our results provide detailed mechanistic insights into the regulation of glycosyltransferase interactions, the transitions between B4GALT1 and ST6GAL1 homo- and heteromers in the Golgi, and cooperative B4GALT1/ST6GAL1 function in N-glycan synthesis.
Assuntos
Antígenos CD/química , Galactosiltransferases/química , Simulação de Acoplamento Molecular , Multimerização Proteica , Sialiltransferases/química , Animais , Antígenos CD/metabolismo , Sítios de Ligação , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Transferência Ressonante de Energia de Fluorescência , Galactosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Sialiltransferases/metabolismo , Eletricidade EstáticaRESUMO
The expression and biological functions of oncofetal markers GD2 and GD3 were extensively studied in neuroectoderm-derived cancers in order to characterize their potential as therapeutic targets. Using immunological approaches, we previously identified GD3, GD2, and OAcGD2 expression in breast cancer (BC) cell lines. However, antibodies specific for O-acetylated gangliosides are not exempt of limitations, as they only provide information on the expression of a limited set of O-acetylated ganglioside species. Consequently, the aim of the present study was to use structural approaches in order to apprehend ganglioside diversity in melanoma, neuroblastoma, and breast cancer cells, focusing on O-acetylated species that are usually lost under alkaline conditions and require specific analytical procedures. We used purification and extraction methods that preserve the O-acetyl modification for the analysis of native gangliosides by MALDI-TOF. We identified the expression of GM1, GM2, GM3, GD2, GD3, GT2, and GT3 in SK-Mel28 (melanoma), LAN-1 (neuroblastoma), Hs 578T, SUM 159PT, MDA-MB-231, MCF-7 (BC), and BC cell lines over-expressing GD3 synthase. Among O-acetylated gangliosides, we characterized the expression of OAcGM1, OAcGD3, OAcGD2, OAcGT2, and OAcGT3. Furthermore, the experimental procedure allowed us to clearly identify the position of the sialic acid residue that carries the O-acetyl group on b- and c-series gangliosides by MS/MS fragmentation. These results show that ganglioside O-acetylation occurs on both inner and terminal sialic acid residue in a cell type-dependent manner, suggesting different O-acetylation pathways for gangliosides. They also highlight the limitation of immuno-detection for the complete identification of O-acetylated ganglioside profiles in cancer cells.
Assuntos
Acetiltransferases/metabolismo , Gangliosídeos/metabolismo , Placa Neural/citologia , Acetilação , Acetiltransferases/genética , Neoplasias da Mama/metabolismo , Feminino , Gangliosídeos/química , Humanos , Células MCF-7 , Melanoma/metabolismo , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Placa Neural/metabolismo , Neuroblastoma/metabolismoRESUMO
We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
Assuntos
Biologia Computacional , Conformação Proteica , Proteínas/ultraestrutura , Software , Algoritmos , Sítios de Ligação/genética , Bases de Dados de Proteínas , Modelos Moleculares , Ligação Proteica/genética , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/genética , Homologia Estrutural de ProteínaRESUMO
MOTIVATION: Protein function is directly related to amino acid residue composition and the dynamics of these residues. Centrality analyses based on residue interaction networks permit to identify key residues in a protein that are important for its fold or function. Such central residues and their environment constitute suitable targets for mutagenesis experiments. Predicted flexibility and changes in flexibility upon mutation provide valuable additional information for the design of such experiments. RESULTS: We combined centrality analyses with DynaMine flexibility predictions in a Cytoscape app called RINspector. The app performs centrality analyses and directly visualizes the results on a graph of predicted residue flexibility. In addition, the effect of mutations on local flexibility can be calculated. AVAILABILITY AND IMPLEMENTATION: The app is publicly available in the Cytoscape app store. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
RESUMO
The Ets-1 oncoprotein is a transcription factor that promotes target gene expression in specific biological processes. Typically, Ets-1 activity is low in healthy cells, but elevated levels of expression have been found in cancerous cells, specifically related to tumor progression. Like the vast majority of the cellular effectors, Ets-1 does not act alone but in association with partners. Given the important role that is attributed to Ets-1 in major human diseases, it is crucial to identify its partners and characterize their interactions. In this context, two DNA-repair enzymes, PARP-1 and DNA-PK, have been identified recently as interaction partners of Ets-1. We here identify their binding mode by means of protein docking. The results identify the interacting surface between Ets-1 and the two DNA-repair enzymes centered on the α-helix H1 of the ETS domain, leaving α-helix H3 available to bind DNA. The models highlight a hydrophobic patch on Ets-1 at the center of the interaction interface that includes three tryptophans (Trp338, Trp356, and Trp361). We rationalize the binding mode using a series of computational analyses, including alanine scanning, molecular dynamics simulation, and residue centrality analysis. Our study constitutes a first but important step in the characterization, at the molecular level, of the interaction between an oncoprotein and DNA-repair enzymes.
Assuntos
Enzimas Reparadoras do DNA/metabolismo , Mapas de Interação de Proteínas , Proteína Proto-Oncogênica c-ets-1/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Enzimas Reparadoras do DNA/química , Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice , Proteína Proto-Oncogênica c-ets-1/química , Alinhamento de SequênciaRESUMO
BACKGROUND: Myelin is a multilayered proteolipid sheath wrapped around selected axons in the nervous system. Its constituent proteins play major roles in forming of the highly regular membrane structure. P2 is a myelin-specific protein of the fatty acid binding protein (FABP) superfamily, which is able to stack lipid bilayers together, and it is a target for mutations in the human inherited neuropathy Charcot-Marie-Tooth disease. A conserved residue that has been proposed to participate in membrane and fatty acid binding and conformational changes in FABPs is Phe57. This residue is thought to be a gatekeeper for the opening of the portal region upon ligand entry and egress. RESULTS: We performed a structural characterization of the F57A mutant of human P2. The mutant protein was crystallized in three crystal forms, all of which showed changes in the portal region and helix α2. In addition, the behaviour of the mutant protein upon lipid bilayer binding suggested more unfolding than previously observed for wild-type P2. On the other hand, membrane binding rendered F57A heat-stable, similarly to wild-type P2. Atomistic molecular dynamics simulations showed opening of the side of the discontinuous ß barrel, giving important indications on the mechanism of portal region opening and ligand entry into FABPs. The results suggest a central role for Phe57 in regulating the opening of the portal region in human P2 and other FABPs, and the F57A mutation disturbs dynamic cross-correlation networks in the portal region of P2. CONCLUSIONS: Overall, the F57A variant presents similar properties to the P2 patient mutations recently linked to Charcot-Marie-Tooth disease. Our results identify Phe57 as a residue regulating conformational changes that may accompany membrane surface binding and ligand exchange in P2 and other FABPs.
Assuntos
Ácidos Graxos/metabolismo , Mutação , Proteína P2 de Mielina/química , Proteína P2 de Mielina/metabolismo , Varredura Diferencial de Calorimetria , Doença de Charcot-Marie-Tooth/genética , Cristalografia por Raios X , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteína P2 de Mielina/genética , Fenilalanina/genética , Estrutura Secundária de Proteína , Desdobramento de ProteínaRESUMO
The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS.
Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/enzimologia , Membrana Celular/enzimologia , Niacina/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Membrana Celular/genética , Niacina/genética , Periplasma/enzimologia , Periplasma/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de ProteínaRESUMO
Protein interactions are essential for cellular processes. In recent years there has been significant progress in computational prediction of 3D structures of individual protein chains, with the best-performing algorithms reaching sub-Ångström accuracy. These techniques are now finding their way into the prediction of protein interactions, adding to the existing modeling approaches. The community-wide Critical Assessment of Predicted Interactions (CAPRI) has been a catalyst for the development of procedures for the structural modeling of protein assemblies by organizing blind prediction experiments. The predicted structures are assessed against unpublished experimentally determined structures using a set of metrics with proven robustness that have been established in the CAPRI community. In addition, several advanced benchmarking databases provide targets against which users can test docking and assembly modeling software. These include the Protein-Protein Docking Benchmark, the CAPRI Scoreset, and the Dockground database, all developed by members of the CAPRI community. Here we present CAPRI-Q, a stand-alone model quality assessment tool, which can be freely downloaded or used via a publicly available web server. This tool applies the CAPRI metrics to assess the quality of query structures against given target structures, along with other popular quality metrics such as DockQ, TM-score and l-DDT, and classifies the models according to the CAPRI model quality criteria. The tool can handle a variety of protein complex types including those involving peptides, nucleic acids, and oligosaccharides. The source code is freely available from https://gitlab.in2p3.fr/cmsb-public/CAPRI-Q and its web interface through the Dockground resource at https://dockground.compbio.ku.edu/assessment/.
Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Proteínas , Software , Proteínas/química , Modelos Moleculares , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Algoritmos , Mapeamento de Interação de Proteínas/métodos , Ligação ProteicaRESUMO
Non-coding (nc) RNAs are increasingly recognized to play important regulatory roles in eukaryotic gene expression. The highly abundant and essential 7SK ncRNA has been shown to negatively regulate RNA Polymerase II transcription by inactivating the positive transcription elongation factor b (P-TEFb) in cellular and Tat-dependent HIV transcription. Here, we identify a more general, P-TEFb-independent role of 7SK RNA in directly affecting the function of the architectural transcription factor and chromatin regulator HMGA1. An important regulatory role of 7SK RNA in HMGA1-dependent cell differentiation and proliferation regulation is uncovered with the identification of over 1500 7SK-responsive HMGA1 target genes. Elevated HMGA1 expression is observed in nearly every type of cancer making the use of a 7SK substructure in the inhibition of HMGA1 activity, as pioneered here, potentially useful in therapy. The 7SK-HMGA1 interaction not only adds an essential facet to the comprehension of transcriptional plasticity at the coupling of initiation and elongation, but also might provide a molecular link between HIV reprogramming of cellular gene expression-associated oncogenesis.
Assuntos
Regulação da Expressão Gênica , Proteína HMGA1a/metabolismo , RNA Nuclear Pequeno/metabolismo , Motivos AT-Hook , Sequência de Bases , Sítios de Ligação , Proposta de Concorrência , DNA/metabolismo , Células HEK293 , Proteína HMGA1a/química , Proteína HMGA1a/isolamento & purificação , Células HeLa , Humanos , Dados de Sequência Molecular , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/isolamento & purificação , Transcrição GênicaRESUMO
TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn2+ which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R304 mutation, are far away from these motifs in the sequence. Until recently, the classical membrane protein topology prediction methods were unable to provide a clear picture of the organization of TMEM165 inside the cell membrane, or to explain in a convincing manner the impact of patient and experimentally-generated mutations on the transporter function of TMEM165. In this study, AlphaFold 2 was used to build a TMEM165 model that was then refined by molecular dynamics simulation with membrane lipids and water. This model provides a realistic picture of the 3D protein scaffold formed from a two-fold repeat of three transmembrane helices/domains where the consensus motifs face each other to form a putative acidic cation-binding site at the cytosolic side of the protein. It sheds new light on the impact of mutations on the transporter function of TMEM165, found in patients and studied experimentally in vitro, formerly and within this study. More particularly and very interestingly, this model explains the impact of the G>R304 mutation on TMEM165's function. These findings provide great confidence in the predicted TMEM165 model whose structural features are discussed in the study and compared to other structural and functional TMEM165 homologs from the CaCA2/UPF0016 family and the LysE superfamily.
RESUMO
Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments. Molecular modeling analysis allowed the identification of four putative residues involved in TRPM8-Rap1A interaction. Point mutations of these sites impaired PPI as shown by GST-pull-down, co-immunoprecipitation, and PLA experiments and revealed their key functional role in the adhesion and migration of PC3 prostate cancer cells. More precisely, TRPM8 inhibits cell migration and adhesion by trapping Rap1A in its GDP-bound inactive form, thus preventing its activation at the plasma membrane. In particular, residues E207 and Y240 in the sequence of TRPM8 and Y32 in that of Rap1A are critical for the interaction between the two proteins not only in PC3 cells but also in cervical (HeLa) and breast (MCF-7) cancer cells. This study deepens our knowledge of the mechanism through which TRPM8 would exert a protective role in cancer progression and provides new insights into the possible use of TRPM8 as a new therapeutic target in cancer treatment.
RESUMO
BACKGROUND: CD44 is a multifunctional membrane glycoprotein. Through its heparan sulfate chain, CD44 presents growth factors to their receptors. We have shown that CD44 and Tropomyosin kinase A (TrkA) form a complex following nerve growth factor (NGF) induction. Our study aimed to understand how CD44 and TrkA interact and the consequences of inhibiting this interaction regarding the pro-tumoral effect of NGF in breast cancer. METHODS: After determining which CD44 isoforms (variants) are involved in forming the TrkA/CD44 complex using proximity ligation assays, we investigated the molecular determinants of this interaction. By molecular modeling, we isolated the amino acids involved and confirmed their involvement using mutations. A CD44v3 mimetic peptide was then synthesized to block the TrkA/CD44v3 interaction. The effects of this peptide on the growth, migration and invasion of xenografted triple-negative breast cancer cells were assessed. Finally, we investigated the correlations between the expression of the TrkA/CD44v3 complex in tumors and histo-pronostic parameters. RESULTS: We demonstrated that isoform v3 (CD44v3), but not v6, binds to TrkA in response to NGF stimulation. The final 10 amino acids of exon v3 and the TrkA H112 residue are necessary for the association of CD44v3 with TrkA. Functionally, the CD44v3 mimetic peptide impairs not only NGF-induced RhoA activation, clonogenicity, and migration/invasion of breast cancer cells in vitro but also tumor growth and metastasis in a xenograft mouse model. We also detected TrkA/CD44v3 only in cancerous cells, not in normal adjacent tissues. CONCLUSION: Collectively, our results suggest that blocking the CD44v3/TrkA interaction can be a new therapeutic option for triple-negative breast cancers.
Assuntos
Neoplasias da Mama , Receptores de Hialuronatos , Fator de Crescimento Neural , Receptor trkA , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Fator de Crescimento Neural/farmacologia , Isoformas de Proteínas , Receptor trkA/metabolismoRESUMO
Residue interaction networks (RINs) describe a protein structure as a network of interacting residues. Central nodes in these networks, identified by centrality analyses, highlight those residues that play a role in the structure and function of the protein. However, little is known about the capability of such analyses to identify residues involved in the formation of macromolecular complexes. Here, we performed six different centrality measures on the RINs generated from the complexes of the SKEMPI 2 database of changes in protein-protein binding upon mutation in order to evaluate the capability of each of these measures to identify major binding residues. The analyses were performed with and without the crystallographic water molecules, in addition to the protein residues. We also investigated the use of a weight factor based on the inter-residue distances to improve the detection of these residues. We show that for the identification of major binding residues, closeness, degree, and PageRank result in good precision, whereas betweenness, eigenvector, and residue centrality analyses give a higher sensitivity. Including water in the analysis improves the sensitivity of all measures without losing precision. Applying weights only slightly raises the sensitivity of eigenvector centrality analysis. We finally show that a combination of multiple centrality analyses is the optimal approach to identify residues that play a role in protein-protein interaction.
RESUMO
BACKGROUND: O-GlcNAcylation is an essential post-translational modification (PTM) in mammalian cells. It consists in the addition of a N-acetylglucosamine (GlcNAc) residue onto serines or threonines by an O-GlcNAc transferase (OGT). Inhibition of OGT is lethal, and misregulation of this PTM can lead to diverse pathologies including diabetes, Alzheimer's disease and cancers. Knowing the location of O-GlcNAcylation sites and the ability to accurately predict them is therefore of prime importance to a better understanding of this process and its related pathologies. PURPOSE: Here, we present an evaluation of the current predictors of O-GlcNAcylation sites based on a newly built dataset and an investigation to improve predictions. METHODS: Several datasets of experimentally proven O-GlcNAcylated sites were combined, and the resulting meta-dataset was used to evaluate three prediction tools. We further defined a set of new features following the analysis of the primary to tertiary structures of experimentally proven O-GlcNAcylated sites in order to improve predictions by the use of different types of machine learning techniques. RESULTS: Our results show the failure of currently available algorithms to predict O-GlcNAcylated sites with a precision exceeding 9%. Our efforts to improve the precision with new features using machine learning techniques do succeed for equal proportions of O-GlcNAcylated and non-O-GlcNAcylated sites but fail like the other tools for real-life proportions where ~1.4% of S/T are O-GlcNAcylated. CONCLUSION: Present-day algorithms for O-GlcNAcylation prediction narrowly outperform random prediction. The inclusion of additional features, in combination with machine learning algorithms, does not enhance these predictions, emphasizing a pressing need for further development. We hypothesize that the improvement of prediction algorithms requires characterization of OGT's partners.
RESUMO
BACKGROUND: The Sda antigen and corresponding biosynthetic enzyme B4GALNT2 are primarily expressed in normal colonic mucosa and are down-regulated to a variable degree in colon cancer tissues. Although their expression profile is well studied, little is known about the underlying regulatory mechanisms. METHODS: To clarify the molecular basis of Sda expression in the human gastrointestinal tract, we investigated the transcriptional regulation of the human B4GALNT2 gene. The proximal promoter region was delineated using luciferase assays and essential trans-acting factors were identified through transient overexpression and silencing of several transcription factors. RESULTS: A short cis-regulatory region restricted to the -72 to +12 area upstream of the B4GALNT2 short-type transcript variant contained the essential promoter activity that drives the expression of the human B4GALNT2 regardless of the cell type. We further showed that B4GALNT2 transcriptional activation mostly requires ETS1 and to a lesser extent SP1. CONCLUSIONS: Results presented herein are expected to provide clues to better understand B4GALNT2 regulatory mechanisms.
Assuntos
N-Acetilgalactosaminiltransferases/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Colo , Células HT29 , Humanos , Mucosa Intestinal , N-Acetilgalactosaminiltransferases/metabolismo , Oligossacarídeos/biossíntese , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Ativação TranscricionalRESUMO
The transcription factor Ets-1 (ETS proto-oncogene 1) shows low expression levels except in specific biological processes like haematopoiesis or angiogenesis. Elevated levels of expression are observed in tumor progression, resulting in Ets-1 being named an oncoprotein. It has recently been shown that Ets-1 interacts with two DNA repair enzymes, PARP-1 (poly(ADP-ribose) polymerase 1) and DNA-PK (DNA-dependent protein kinase), through two different domains and that these interactions play a role in cancer. Considering that Ets-1 can bind to distinctly different domains of two DNA repair enzymes, we hypothesized that the interaction can be transposed onto homologs of the respective domains. We have searched for sequence and structure homologs of the interacting ETS(Ets-1), BRCT(PARP-1) and SAP(DNA-PK) domains, and have identified several candidate binding pairs that are currently not annotated as such. Many of the Ets-1 partners are associated to DNA repair mechanisms. We have applied protein-protein docking to establish putative interaction poses and investigated these using centrality analyses at the protein residue level. Most of the identified poses are virtually similar to our recently established interaction model for Ets-1/PARP-1 and Ets-1/DNA-PK. Our work illustrates the potentially high number of interactors of Ets-1, in particular involved in DNA repair mechanisms, which shows the oncoprotein as a potential important regulator of the mechanism.