Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(3): 624-632, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145984

RESUMO

(R,S)-methadone ((R,S)-MTD) is a µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike (R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the MOR-galanin Gal1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use. One-sentence summary: (S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the MOR-Gal1R heteromer, decreasing its abuse liability.


Assuntos
Analgésicos Opioides , Metadona , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Receptores Opioides mu/efeitos dos fármacos , Animais , Metadona/farmacologia , Masculino , Analgésicos Opioides/farmacologia , Humanos , Camundongos , Dopamina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ligantes , Estereoisomerismo
2.
Nat Commun ; 15(1): 893, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291050

RESUMO

Subanesthetic ketamine is increasingly used for the treatment of varied psychiatric conditions, both on- and off-label. While it is commonly classified as an N-methyl D-aspartate receptor (NMDAR) antagonist, our picture of ketamine's mechanistic underpinnings is incomplete. Recent clinical evidence has indicated, controversially, that a component of the efficacy of subanesthetic ketamine may be opioid dependent. Using pharmacological functional ultrasound imaging in rats, we found that blocking opioid receptors suppressed neurophysiologic changes evoked by ketamine, but not by a more selective NMDAR antagonist, in limbic regions implicated in the pathophysiology of depression and in reward processing. Importantly, this opioid-dependent response was strongly sex-dependent, as it was not evident in female subjects and was fully reversed by surgical removal of the male gonads. We observed similar sex-dependent effects of opioid blockade affecting ketamine-evoked postsynaptic density and behavioral sensitization, as well as in opioid blockade-induced changes in opioid receptor density. Together, these results underscore the potential for ketamine to induce its affective responses via opioid signaling, and indicate that this opioid dependence may be strongly influenced by subject sex. These factors should be more directly assessed in future clinical trials.


Assuntos
Ketamina , Transtornos Mentais , Humanos , Ratos , Masculino , Feminino , Animais , Ketamina/farmacologia , Ketamina/uso terapêutico , Analgésicos Opioides/farmacologia , Transtornos Mentais/tratamento farmacológico , Transdução de Sinais , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Mol Imaging Biol ; 25(2): 384-390, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35999424

RESUMO

PURPOSE: 6-O-(2-[18F]Fluoroethyl)-6-O-desmethyl-diprenorphine ([18F]FE-DPN) is regarded as a non-selective opioid receptor radiotracer. PROCEDURE: Here, we report the first characterization of [18F]FE-DPN synthesized from the novel precursor, 6-O-(2-tosyloxyethoxy)-6-O-desmethyl-3-O-trityl-diprenorphine (TE-TDDPN), using a one-pot, two-step nucleophilic radiosynthesis to image opioid receptors in rats and mice using positron emission tomography. RESULTS: We also show that [18F]FE-DPN and [3H]DPN exhibit negligible brain uptake in mu opioid receptor (MOR) knockout mice. CONCLUSIONS: Taken together with prior findings, our results suggest that [18F]FE-DPN and [3H]DPN preferentially bind to MOR in rodents in vivo.


Assuntos
Tomografia por Emissão de Pósitrons , Receptores Opioides mu , Ratos , Camundongos , Animais , Diprenorfina/metabolismo , Receptores Opioides mu/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Receptores Opioides/metabolismo
4.
Biol Psychiatry ; 93(12): 1118-1126, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841701

RESUMO

BACKGROUND: (S)-ketamine is an NMDA receptor antagonist, but it also binds to and activates mu opioid receptors (MORs) and kappa opioid receptors in vitro. However, the extent to which these receptors contribute to (S)-ketamine's in vivo pharmacology is unknown. METHODS: We investigated the extent to which (S)-ketamine interacts with opioid receptors in rats by combining in vitro and in vivo pharmacological approaches, in vivo molecular and functional imaging, and behavioral procedures relevant to human abuse liability. RESULTS: We found that the preferential opioid receptor antagonist naltrexone decreased (S)-ketamine self-administration and (S)-ketamine-induced activation of the nucleus accumbens, a key brain reward region. A single reinforcing dose of (S)-ketamine occupied brain MORs in vivo, and repeated doses decreased MOR density and activity and decreased heroin reinforcement without producing changes in NMDA receptor or kappa opioid receptor density. CONCLUSIONS: These results suggest that (S)-ketamine's abuse liability in humans is mediated in part by brain MORs.


Assuntos
Ketamina , Ratos , Humanos , Animais , Ketamina/farmacologia , Receptores Opioides mu/fisiologia , Receptores de N-Metil-D-Aspartato , Heroína , Receptores Opioides/metabolismo , Receptores Opioides kappa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa