Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 167(2): 498-511.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693351

RESUMO

During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , N-Glicosil Hidrolases/metabolismo , Animais , Sistema Livre de Células/química , Reagentes de Ligações Cruzadas/química , DNA/biossíntese , DNA/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Ficusina/química , N-Glicosil Hidrolases/química , Xenopus laevis
2.
Mol Cell ; 56(1): 174-85, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25219499

RESUMO

The tumor suppressor protein BRCA1 promotes homologous recombination (HR), a high-fidelity mechanism to repair DNA double-strand breaks (DSBs) that arise during normal replication and in response to DNA-damaging agents. Recent genetic experiments indicate that BRCA1 also performs an HR-independent function during the repair of DNA interstrand crosslinks (ICLs). Here we show that BRCA1 is required to unload the CMG helicase complex from chromatin after replication forks collide with an ICL. Eviction of the stalled helicase allows leading strands to be extended toward the ICL, followed by endonucleolytic processing of the crosslink, lesion bypass, and DSB repair. Our results identify BRCA1-dependent helicase unloading as a critical, early event in ICL repair.


Assuntos
Proteína BRCA1/fisiologia , DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Modelos Genéticos , Proteínas de Xenopus/fisiologia , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
3.
Nature ; 525(7569): 345-50, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26322582

RESUMO

Eukaryotic DNA replication terminates when replisomes from adjacent replication origins converge. Termination involves local completion of DNA synthesis, decatenation of daughter molecules and replisome disassembly. Termination has been difficult to study because termination events are generally asynchronous and sequence nonspecific. To overcome these challenges, we paused converging replisomes with a site-specific barrier in Xenopus egg extracts. Upon removal of the barrier, forks underwent synchronous and site-specific termination, allowing mechanistic dissection of this process. We show that DNA synthesis does not slow detectably as forks approach each other, and that leading strands pass each other unhindered before undergoing ligation to downstream lagging strands. Dissociation of the replicative CMG helicase (comprising CDC45, MCM2-7 and GINS) occurs only after the final ligation step, and is not required for completion of DNA synthesis, strongly suggesting that converging CMGs pass one another and dissociate from double-stranded DNA. This termination mechanism allows rapid completion of DNA synthesis while avoiding premature replisome disassembly.


Assuntos
Replicação do DNA , Oócitos/metabolismo , Xenopus laevis , Animais , Extratos Celulares/farmacologia , DNA/biossíntese , DNA/metabolismo , DNA Helicases/metabolismo , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo
4.
EMBO J ; 34(14): 1971-85, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26071591

RESUMO

DNA interstrand cross-links (ICLs) are repaired in S phase by a complex, multistep mechanism involving translesion DNA polymerases. After replication forks collide with an ICL, the leading strand approaches to within one nucleotide of the ICL ("approach"), a nucleotide is inserted across from the unhooked lesion ("insertion"), and the leading strand is extended beyond the lesion ("extension"). How DNA polymerases bypass the ICL is incompletely understood. Here, we use repair of a site-specific ICL in Xenopus egg extracts to study the mechanism of lesion bypass. Deep sequencing of ICL repair products showed that the approach and extension steps are largely error-free. However, a short mutagenic tract is introduced in the vicinity of the lesion, with a maximum mutation frequency of ~1%. Our data further suggest that approach is performed by a replicative polymerase, while extension involves a complex of Rev1 and DNA polymerase ζ. Rev1-pol ζ recruitment requires the Fanconi anemia core complex but not FancI-FancD2. Our results begin to illuminate how lesion bypass is integrated with chromosomal DNA replication to limit ICL repair-associated mutagenesis.


Assuntos
Nucleotidiltransferases/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Imunoprecipitação da Cromatina , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Feminino , Complexos Multiproteicos , Mutagênese , Nucleotidiltransferases/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação , Proteínas de Xenopus/genética
5.
Cell Rep ; 25(9): 2317-2328.e5, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485802

RESUMO

The multisubunit ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. APC/C is tightly regulated by the spindle assembly checkpoint (SAC), which involves MPS1 and MAD2-dependent temporal inhibition of APC/C. We analyzed the contribution of the APC/C subunits APC7 and APC16 to APC/C composition and function in human cells. APC16 is required for APC7 assembly into APC/C, whereas APC16 assembles independently of APC7. APC7 and APC16 knockout cells display no major defects in mitotic progression, cyclin B1 degradation, or SAC response, but APC/C lacking these two subunits shows reduced ubiquitylation activity in vitro. Strikingly, deletion of APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display accelerated mitosis and require SAC-independent MPS1 function for genome stability. These findings reveal that the composition of APC/C critically influences the importance of the SAC in humans.


Assuntos
Subunidade Apc7 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proliferação de Células , Células HCT116 , Células HeLa , Humanos , Proteínas Mad2/metabolismo , Mitose , Ubiquitinação
6.
Mol Cell Biol ; 24(13): 5776-87, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15199134

RESUMO

Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (gamma-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced gamma-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, gamma-H2AX foci were also induced in Ercc1(-/-) cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1(-/-) cells, MMC-induced gamma-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1(-/-) and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Animais , Ciclo Celular , Linhagem Celular , Aberrações Cromossômicas , DNA/química , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/fisiologia , Endonucleases/deficiência , Endonucleases/fisiologia , Raios gama , Histonas/análise , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mitomicina/farmacologia , Conformação de Ácido Nucleico , Raios Ultravioleta
7.
Nat Struct Mol Biol ; 22(3): 242-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643322

RESUMO

DNA interstrand cross-links (ICLs) prevent strand separation during DNA replication and transcription and therefore are extremely cytotoxic. In metazoans, a major pathway of ICL repair is coupled to DNA replication, and it requires the Fanconi anemia pathway. In most current models, collision of a single DNA replication fork with an ICL is sufficient to initiate repair. In contrast, we show here that in Xenopus egg extracts two DNA replication forks must converge on an ICL to trigger repair. When only one fork reaches the ICL, the replicative CMG helicase fails to unload from the stalled fork, and repair is blocked. Arrival of a second fork, even when substantially delayed, rescues repair. We conclude that ICL repair requires a replication-induced X-shaped DNA structure surrounding the lesion, and we speculate on how this requirement helps maintain genomic stability in S phase.


Assuntos
Reparo do DNA/fisiologia , DNA/química , Modelos Genéticos , Modelos Moleculares , Animais , Replicação do DNA , Instabilidade Genômica , Fase S , Xenopus
8.
Cell Biochem Biophys ; 53(1): 17-31, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19034694

RESUMO

During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.


Assuntos
Dano ao DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Animais , Ciclo Celular/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Recombinação Genética , Origem de Replicação
9.
Mol Cell ; 28(3): 468-81, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17996710

RESUMO

Homologous recombination is essential for preserving genome integrity. Joining of homologous DNA molecules through strand exchange, a pivotal step in recombination, is mediated by RAD51. Here, we identify RAD51AP1 as a RAD51 accessory protein that specifically stimulates joint molecule formation through the combination of structure-specific DNA binding and physical contact with RAD51. At the cellular level, we show that RAD51AP1 is required to protect cells from the adverse effects of DNA double-strand break-inducing agents. At the biochemical level, we show that RAD51AP1 has a selective affinity for branched-DNA structures that are obligatory intermediates during joint molecule formation. Our results highlight the importance of structural transitions in DNA as control points in recombination. The affinity of RAD51AP1 for the central protein and DNA intermediates of recombination confers on it the ability to control the preservation of genome integrity at a number of critical mechanistic steps.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Rad51 Recombinase/metabolismo , Recombinação Genética/fisiologia , Sequência de Bases , Dano ao DNA , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA
10.
Nat Struct Mol Biol ; 14(11): 1096-104, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17934473

RESUMO

Faithful duplication of the genome requires structure-specific endonucleases such as the RuvABC complex in Escherichia coli. These enzymes help to resolve problems at replication forks that have been disrupted by DNA damage in the template. Much less is known about the identities of these enzymes in mammalian cells. Mus81 is the catalytic component of a eukaryotic structure-specific endonuclease that preferentially cleaves branched DNA substrates reminiscent of replication and recombination intermediates. Here we explore the mechanisms by which Mus81 maintains chromosomal stability. We found that Mus81 is involved in the formation of double-strand DNA breaks in response to the inhibition of replication. Moreover, in the absence of chromosome processing by Mus81, recovery of stalled DNA replication forks is attenuated and chromosomal aberrations arise. We suggest that Mus81 suppresses chromosomal instability by converting potentially detrimental replication-associated DNA structures into intermediates that are more amenable to DNA repair.


Assuntos
Cromossomos de Mamíferos/química , Cromossomos de Mamíferos/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Conformação de Ácido Nucleico , Animais , Afidicolina/farmacologia , Ciclo Celular/fisiologia , Células Cultivadas , Instabilidade Cromossômica , Aberrações Cromossômicas/induzido quimicamente , Cromossomos de Mamíferos/genética , DNA Helicases , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Células-Tronco Embrionárias/efeitos da radiação , Endonucleases/genética , Inibidores Enzimáticos/farmacologia , Humanos , Hidroxiureia/farmacologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Radiação Ionizante
11.
EMBO J ; 25(20): 4921-32, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17036055

RESUMO

Repair of interstrand crosslinks (ICLs) requires multiple-strand incisions to separate the two covalently attached strands of DNA. It is unclear how these incisions are generated. DNA double-strand breaks (DSBs) have been identified as intermediates in ICL repair, but enzymes responsible for producing these intermediates are unknown. Here we show that Mus81, a component of the Mus81-Eme1 structure-specific endonuclease, is involved in generating the ICL-induced DSBs in mouse embryonic stem (ES) cells in S phase. Given the DNA junction cleavage specificity of Mus81-Eme1 in vitro, DNA damage-stalled replication forks are suitable in vivo substrates. Interestingly, generation of DSBs from replication forks stalled due to DNA damage that affects only one of the two DNA strands did not require Mus81. Furthermore, in addition to a physical interaction between Mus81 and the homologous recombination protein Rad54, we show that Mus81(-/-) Rad54(-/-) ES cells were as hypersensitive to ICL agents as Mus81(-/-) cells. We propose that Mus81-Eme1- and Rad54-mediated homologous recombination are involved in the same DNA replication-dependent ICL repair pathway.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Recombinação Genética , Animais , Células Cultivadas , DNA Helicases , Replicação do DNA/genética , Proteínas de Ligação a DNA/deficiência , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Endodesoxirribonucleases/genética , Endonucleases/deficiência , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Fase S/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
12.
EMBO J ; 23(17): 3548-58, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15297881

RESUMO

Genetic defects in DNA repair mechanisms and cell cycle checkpoint (CCC) genes result in increased genomic instability and cancer predisposition. Discovery of mammalian homologs of yeast CCC genes suggests conservation of checkpoint mechanisms between yeast and mammals. However, the role of many CCC genes in higher eukaryotes remains elusive. Here, we report that targeted deletion of an N-terminal part of mRad17, the mouse homolog of the Schizosaccharomyces pombe Rad17 checkpoint clamp-loader component, resulted in embryonic lethality during early/mid-gestation. In contrast to mouse embryos, embryonic stem (ES) cells, isolated from mRad17(5'Delta/5'Delta) embryos, produced truncated mRad17 and were viable. These cells displayed hypersensitivity to various DNA-damaging agents. Surprisingly, mRad17(5'Delta/5'Delta) ES cells were able to arrest cell cycle progression upon induction of DNA damage. However, they displayed impaired homologous recombination as evidenced by a strongly reduced gene targeting efficiency. In addition to a possible role in DNA damage-induced CCC, based on sequence homology, our results indicate that mRad17 has a function in DNA damage-dependent recombination that may be responsible for the sensitivity to DNA-damaging agents.


Assuntos
Proteínas de Ciclo Celular/genética , Morte Fetal/genética , Mutação , Sequência de Aminoácidos , Animais , Sequência de Bases , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , DNA/genética , Dano ao DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA , Feminino , Raios gama , Marcação de Genes , Genes Letais , Idade Gestacional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Dados de Sequência Molecular , Mutagênicos/toxicidade , Gravidez , Tolerância a Radiação/genética , Recombinação Genética , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa