Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 189: 106567, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364877

RESUMO

Human ascariasis is the most prevalent helminth infection, affecting 445 million people worldwide. To better understand the impact of the immune system on the pathophysiology of individuals infected with Ascaris suum, mice have been used as experimental models. The RT-qPCR technique is a critical auxiliary tool of investigation used to quantify mRNA levels. However, proper normalization using reference genes is essential to ensure reliable outcomes to avoid analytical errors and false results. Despite the importance of reference genes for experimental A. suum infection studies, no specific reference genes have been identified yet. Therefore, we conducted a study to assess five potential reference genes (GAPDH, 18s, ACTB, B2M, and HPRT1) in different tissues (liver, lungs, small and large intestines) affected by A. suum larval migration in C57BL/6j mice. Tissue collection was carried out to analyze parasite burden and confirm the presence of larvae during the peak of migration in each tissue. Upon confirmation, we analyzed different genes in the tissues and found no common gene with stable expression. Our results highlight the importance of analyzing different genes and using different software programs to ensure reliable relative expression results. Based on our findings, B2M was ranked as the ideal reference gene for the liver, while 18S was the most stable gene in the lung and small intestine. ACTB, or a combination of ACTB with GAPDH, was deemed suitable as reference genes for the large intestine due to their stable expression and less variation between the control and infected groups. To further demonstrate the impact of using different reference genes, we normalized the expression of a chemokine gene (CXCL9) in all tissues. Significant differences in CXCL9 expression levels were observed between different groups in all tissues except for the large intestine. This underscores the importance of selecting appropriate reference genes to avoid overestimating target gene expression levels and encountering normalization-related issues that can lead to false results. In conclusion, our study highlights the significance of using reliable reference genes for accurate RT-qPCR analysis, especially in the context of A. suum infection studies in different tissues. Proper normalization is crucial to ensure the validity of gene expression data and avoid potential pitfalls in interpreting results.


Assuntos
Ascaris suum , Humanos , Camundongos , Animais , Ascaris suum/genética , Camundongos Endogâmicos C57BL , Perfilação da Expressão Gênica , Software , Gliceraldeído-3-Fosfato Desidrogenases/genética , Reação em Cadeia da Polimerase em Tempo Real
2.
PLoS Pathog ; 17(11): e1010067, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784389

RESUMO

Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.


Assuntos
Ascaríase/imunologia , Ascaris suum/imunologia , Eosinófilos/fisiologia , Imunoglobulina A Secretora/metabolismo , Pneumonia/prevenção & controle , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Ascaríase/metabolismo , Ascaríase/parasitologia , Feminino , Imunoglobulina A Secretora/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/parasitologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
3.
Infect Immun ; 90(2): e0059521, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34807734

RESUMO

Ascariasis is a neglected tropical disease that is widespread in the world and has important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosae induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminths, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Thus, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosae in male mice with early ascariasis. Therefore, two mouse strains that showed different susceptibilities to ascariasis (BALB/c and C57BL/6J) when experimentally infected with 2,500 infective eggs of Ascaris suum from time point 0 were examined: the immune parasitological parameters were evaluated each 2 days after infection over a period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary secretory IgA (S-IgA) contributing to protection against early ascariasis by reducing the amount of migrating larvae as well as the influx of leukocytes in the lung and the consequent impairment of pulmonary capacity.


Assuntos
Ascaríase , Ascaris suum , Parasitos , Pneumonia , Doenças dos Suínos , Animais , Ascaris suum/genética , Patrimônio Genético , Imunoglobulina A Secretora , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Suínos
4.
Exp Parasitol ; 238: 108267, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35550886

RESUMO

BACKGROUND: Human ascariasis is one of the most prevalent neglected tropical diseases worldwide. The immune response during human ascariasis is characterized by Th2 polarization and a mixed Th2/Th17 response during the pathogenesis of experimental larval ascariasis. Cytokines and other pro-inflammatory mediators, such as nitric oxide (NO), are involved in helminthic infections. However, the role of NO in ascariasis remains unclear. OBJECTIVES: Given the importance of NO in inflammation, we aimed to determine the immunological and histopathological alterations in the livers of C57BL/6 iNOS-/- mice during A. suum infection. METHODS: In this study, parasitic load was evaluated in the livers of wild type C57BL/6 and C57BL/6 iNOS-/- mice infected with A. suum. Histopathological and morphometric analyses and analysis of serum cytokines via Cytometric Bead Array were performed, and the activity of eosinophil peroxidase and myeloperoxidase of neutrophils in the tissues were determined. RESULTS: The results showed that NO is important for controlling parasitic load during infection by A. suum. C57BL/6iNOS-/- mice showed reduced inflammatory processes and less tissue damage during liver larval migration of A. suum, which is associated with a reduction in serum levels of pro-inflammatory cytokines. CONCLUSIONS: We demonstrated that NO is a crucial inflammatory molecule during Ascaris sp. infection and controls the establishment of the parasite and the development of the host immune response in the liver.


Assuntos
Ascaríase , Ascaris suum , Parasitos , Animais , Ascaríase/parasitologia , Citocinas , Inflamação , Fígado/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico
5.
Clin Immunol ; 231: 108844, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478881

RESUMO

The development of T follicular helper cells (Tfh) is a multifactorial process that occurs in multiple stages. After their activation the Tfh cells interact with the B cells to complete their differentiation. During this process, the Tfh cells begin to express canonical molecules such as the transcription factor B-cell lymphoma 6 protein, the CXC chemokine receptors type 5, and the inducible T-cell costimulator, as well as secreting other molecules such as IL-21. This whole process is regulated positively and negatively by several factors so that the best response is offered in the face of diseases of various origins, among them helminthiasis. In this context, the role of circulating Tfh, IL-4 and IgG subtypes is essential for an effective response against these pathogens. In this review, the migration process and the differentiation of Tfh, the regulation, their cell subtypes and the role of Tfh in the context of helminth infections will be addressed.


Assuntos
Helmintíase/imunologia , Células T Auxiliares Foliculares/imunologia , Animais , Diferenciação Celular/imunologia , Humanos , Ativação Linfocitária/imunologia
6.
Malar J ; 20(1): 296, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210332

RESUMO

BACKGROUND: Ascariasis and malaria are highly prevalent parasitic diseases in tropical regions and often have overlapping endemic areas, contributing to high morbidity and mortality rates in areas with poor sanitary conditions. Several studies have previously aimed to correlate the effects of Ascaris-Plasmodium coinfections but have obtained contradictory and inconclusive results. Therefore, the present study aimed to investigate parasitological and immunopathological aspects of the lung during murine experimental concomitant coinfection by Plasmodium berghei and Ascaris suum during larvae ascariasis. METHODS: C57BL/6J mice were inoculated with 1 × 104 P. berghei strain NK65-NY-infected red blood cells (iRBCs) intraperitoneally and/or 2500 embryonated eggs of A. suum by oral gavage. P. berghei parasitaemia, morbidity and the survival rate were assessed. On the seventh day postinfection (dpi), A. suum lung burden analysis; bronchoalveolar lavage (BAL); histopathology; NAG, MPO and EPO activity measurements; haematological analysis; and respiratory mechanics analysis were performed. The concentrations of interleukin (IL)-1ß, IL-12/IL-23p40, IL-6, IL-4, IL-33, IL-13, IL-5, IL-10, IL-17A, IFN-γ, TNF and TGF-ß were assayed by sandwich ELISA. RESULTS: Animals coinfected with P. berghei and A. suum show decreased production of type 1, 2, and 17 and regulatory cytokines; low leukocyte recruitment in the tissue; increased cellularity in the circulation; and low levels of NAG, MPO and EPO activity that lead to an increase in larvae migration, as shown by the decrease in larvae recovered in the lung parenchyma and increase in larvae recovered in the airway. This situation leads to severe airway haemorrhage and, consequently, an impairment respiratory function that leads to high morbidity and early mortality. CONCLUSIONS: This study demonstrates that the Ascaris-Plasmodium interaction is harmful to the host and suggests that this coinfection may potentiate Ascaris-associated pathology by dampening the Ascaris-specific immune response, resulting in the early death of affected animals.


Assuntos
Ascaríase , Coinfecção , Regulação para Baixo/imunologia , Imunidade Inata/genética , Malária , Animais , Ascaríase/imunologia , Ascaríase/parasitologia , Ascaríase/patologia , Ascaris suum/genética , Ascaris suum/fisiologia , Coinfecção/imunologia , Coinfecção/parasitologia , Coinfecção/patologia , Regulação da Expressão Gênica , Pulmão/patologia , Malária/imunologia , Malária/parasitologia , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/fisiologia
8.
Malar J ; 16(1): 42, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28118834

RESUMO

BACKGROUND: The clinical outcome of malaria depends on the delicate balance between pro-inflammatory and immunomodulatory cytokine responses triggered during infection. Despite the numerous reports on characterization of plasma levels of cytokines/chemokines, there is no consensus on the profile of these mediators during blood stage malaria. The identification of acute phase biomarkers might contribute to a better understanding of the disease, allowing the use of more effective therapeutic approaches to prevent the progression towards severe disease. In the present study, the plasma levels of cytokines and chemokines and their association with parasitaemia and number of previous malaria episodes were evaluated in Plasmodium vivax-infected patients during acute and convalescence phase, as well as in healthy donors. METHODS: Samples of plasma were obtained from peripheral blood samples from four different groups: P. vivax-infected, P. vivax-treated, endemic control and malaria-naïve control. The cytokine (IL-6, IL-10, IL-17, IL-27, TGF-ß, IFN-γ and TNF) and chemokine (MCP-1/CCL2, IP-10/CXCL10 and RANTES/CCL5) plasma levels were measured by CBA or ELISA. The network analysis was performed using Spearman correlation coefficient. RESULTS: Plasmodium vivax infection induced a pro-inflammatory response driven by IL-6 and IL-17 associated with an immunomodulatory profile mediated by IL-10 and TGF-ß. In addition, a reduction was observed of IFN-γ plasma levels in P. vivax group. A lower level of IL-27 was observed in endemic control group in comparison to malaria-naïve control group. No significant results were found for IL-12p40 and TNF. It was also observed that P. vivax infection promoted higher levels of MCP-1/CCL2 and IP-10/CXCL10 and lower levels of RANTES/CCL5. The plasma level of IL-10 was elevated in patients with high parasitaemia and with more than five previous malaria episodes. Furthermore, association profile between cytokine and chemokine levels were observed by correlation network analysis indicating signature patterns associated with different parasitaemia levels. CONCLUSIONS: The P. vivax infection triggers a balanced immune response mediated by IL-6 and MCP-1/CCL2, which is modulated by IL-10. In addition, the results indicated that IL-10 plasma levels are influenced by parasitaemia and number of previous malaria episodes.


Assuntos
Citocinas/sangue , Malária Vivax/imunologia , Malária Vivax/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Plasma/química , Adulto Jovem
9.
BMC Infect Dis ; 17(1): 253, 2017 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-28390393

RESUMO

BACKGROUND: While the macrophage polarization is well characterized in helminth infections, the natural heterogeneity of monocytes with multiple cell phenotypes might influence the outcome of neglected diseases, such hookworm infection. Here, we report the profile of monocytes in human hookworm infections as a model to study the regulatory subpopulation of monocytes in helminth infections. METHODS: Blood samples were collected from 19 Necator americanus-infected individuals and 13 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were isolated, and immunophenotyping was conducted by flow cytometry. The expressions of genes encoding human nitric oxide synthase (iNOS), interleukin 4 (IL-4), arginase-1 (Arg-1) and glyceraldehyde 3-phosphate dehydrogenase were quantified by qPCR. Plasma levels of IL-4 were determined by sandwich ELISA. Unpaired t-tests or Mann-Whitney tests were used depending on the data distribution. RESULTS: Hookworm infected individuals (HWI) showed a significant increase in the number of monocytes/mm3 (555.2 ± 191.0) compared to that of the non-infected (NI) individuals (120.4 ± 44.7) (p < 0.0001). While the frequencies of CD14+IL-10+ and CD14+IL-12+ cells were significantly reduced in the HWI compared to NI group (p = 0.0289 and p < 0.0001, respectively), the ratio between IL-10/IL-12 producing monocytes was significantly elevated in HWI (p = 0.0004), indicating the potential regulatory activity of these cells. Measurement of IL-4 levels and gene expression of IL-4 and Arg-1 (highly expressed in alternatively activated macrophages) revealed no significant differences between the NI and HWI groups. Interestingly, individuals from the HWI group had higher expression of the iNOS gene (associated with a regulatory profile) (20.27 ± 2.97) compared to the NI group (11.28 ± 1.18, p = 0.0409). Finally, individuals from the HWI group had a significantly higher frequency of CD206+CD23+IL-10+ (7.57 ± 1.96) cells compared to individuals from the NI group (0.35 ± 0.09) (p < 0.001), suggesting that activated monocytes are a potential source of regulatory cytokines during hookworm infection. CONCLUSIONS: Natural hookworm infection induces a high frequency of circulating monocytes that present a regulatory profile and promote the downmodulation of the proinflammatory response, which may contribute to prolonged survival of the parasite in the host.


Assuntos
Infecções por Uncinaria/imunologia , Monócitos/imunologia , Adulto , Idoso , Animais , Arginase/genética , Citocinas/metabolismo , Feminino , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Imunofenotipagem , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-4/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/genética , Fragmentos de Peptídeos/genética
11.
BMC Infect Dis ; 15: 35, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25636730

RESUMO

BACKGROUND: For a long time, the role of CD8(+) T cells in blood-stage malaria was not considered important because erythrocytes do not express major histocompatibility complex (MHC) class I proteins. While recent evidences suggest that CD8(+) T cells may play an important role during the erythrocytic phase of infection by eliminating parasites, CD8(+) T cells might also contribute to modulate the host response through production of regulatory cytokines. Thus, the role of CD8(+) T cells during blood-stage malaria is unclear. Here, we report the phenotypic profiling of CD8(+) T cells subsets from patients with uncomplicated symptomatic P. vivax malaria. METHODS: Blood samples were collected from 20 Plasmodium vivax-infected individuals and 12 healthy individuals. Immunophenotyping was conducted by flow cytometry. Plasma levels of IFN-γ, TNF-α and IL-10 were determined by ELISA/CBA. Unpaired t-test or Mann-Whitney test was used depending on the data distribution. RESULTS: P. vivax-infected subjects had lower percentages and absolute numbers of CD8(+)CD45RA(+) and CD8(+)CD45RO(+) T cells when compared to uninfected individuals (p ≤ 0.0002). A significantly lower absolute number of circulating CD8(+)CD45(+)CCR7(+) cells (p = 0.002) was observed in P. vivax-infected individuals indicating that infection reduces the number of central memory T cells. Cytokine expression was significantly reduced in the naïve T cells from infected individuals compared with negative controls, as shown by lower numbers of IFN-γ(+) (p = 0.001), TNF-α(+) (p < 0.0001) and IL-10(+) (p < 0.0001) CD8(+) T cells. Despite the reduction in the number of CD8(+) memory T cells producing IFN-γ (p < 0.0001), P. vivax-infected individuals demonstrated a significant increase in memory CD8(+)TNF-α(+) (p = 0.016) and CD8(+)IL-10(+) (p = 0.004) cells. Positive correlations were observed between absolute numbers of CD8(+)IL-10(+) and numbers of CD8(+)IFN-γ(+) (p < 0.001) and CD8(+)TNF-α(+) T cells (p ≤ 0.0001). Finally, an increase in the plasma levels of TNF-α (p = 0.017) and IL-10 (p = 0.006) and a decrease in the IFN-γ plasma level (p <0.0001) were observed in the P. vivax-infected individuals. CONCLUSIONS: P. vivax infection reduces the numbers of different subsets of CD8(+) T cells, particularly the memory cells, during blood-stage of infection and enhances the number of CD8(+) memory T cells expressing IL-10, which positively correlates with the number of cells expressing TNF-α and IFN-γ.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Adulto , Idoso , Contagem de Células Sanguíneas , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Humanos , Malária Vivax/sangue , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
12.
Diagn Microbiol Infect Dis ; 110(1): 116405, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906031

RESUMO

Parasitic co-infections are common in developing countries and can interfere with leprosy treatment, leading to an increased risk of inflammatory leprosy reactions. This study assessed serum immunoglobulin G (IgG) levels against Toxoplasma gondii and Visceral Leishmaniasis (VL) antigens in 270 leprosy patients from Brazilian states. Regarding the respective cut-offs, the prevalence of IgG seropositivity for T. gondii and VL were 21.05 % and 47.36 % in the leprosy-negative group, and 77.7 % and 52.6 % in the leprosy-positive group. Of the 270 leprosy patients, 158 (58.5 %) presented with inflammatory leprosy reactions. Of those, 72 (59.5 %) had neuritis, 35 (48.6 %) had reverse reactions, and 28 (38.9 %) had ENL in both Brazilian states. Leprosy patients with anti-Leishmania IgG seropositivity were 3.25 times more likely to develop neuritis (95 % C.I.: 1.187 - 9.154; p = 0.019). These findings are particularly relevant for clinical settings where both leprosy and parasitic diseases are prevalent and could provide essential guidance for detecting and addressing complications arising from parasitic co-infections in leprosy patients, thereby improving clinical management strategies.


Assuntos
Anticorpos Antiprotozoários , Coinfecção , Imunoglobulina G , Leishmania infantum , Leishmaniose Visceral , Hanseníase , Toxoplasma , Toxoplasmose , Humanos , Imunoglobulina G/sangue , Toxoplasma/imunologia , Coinfecção/epidemiologia , Coinfecção/parasitologia , Leishmania infantum/imunologia , Toxoplasmose/epidemiologia , Toxoplasmose/complicações , Feminino , Brasil/epidemiologia , Masculino , Anticorpos Antiprotozoários/sangue , Estudos Soroepidemiológicos , Adulto , Hanseníase/epidemiologia , Hanseníase/complicações , Pessoa de Meia-Idade , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/complicações , Leishmaniose Visceral/sangue , Adulto Jovem , Adolescente , Idoso , Criança
13.
Heliyon ; 10(14): e33739, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108859

RESUMO

Alveolar macrophages (AM) and monocytes (MO) are myeloid cells that play a substantial role in the development and establishment of the innate and adaptive immune response. These cells are crucial for host defense against various pathogens, but their role in malaria is poorly understood. Here, we characterize the dynamics of AMs and recruited leukocytes subpopulations in the airways during experimental Plasmodium berghei NK65-NY (PbNK65). We show that PbNK65 infection induces an increased pulmonary vascular permeability that provides Ly6Clow MOs, neutrophils (NEU), CD4+ and CD8+ lymphocytes in the airways. This inflammatory environment resulted in an increase in the population and alteration of the activation state of the AMs. Taken together, the data presented provide new insights into airway inflammation associated with pulmonary malaria.

14.
Acta Trop ; 239: 106827, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610530

RESUMO

Visceral leishmaniasis (VL) is a fatal manifestation of an infection caused by intracellular protozoa of the Leishmania genus. In New World countries, VL is classified as a zoonotic disease with domestic dogs acting as its main reservoir. Asymptomatic dogs are as competent to transmit Leishmania to the vectors as symptomatic dogs, however current diagnostic tests are limited and present low sensitivity for this important group. The development of accurate tests is fundamental to the early diagnosis, treatment, and control of canine leishmaniasis. In this study, we investigated the use of a recombinant protein (dynamin-1-like protein, Dyn-1) from L. infantum, as a potential target antigen for leishmaniasis serodiagnosis in both symptomatic and asymptomatic dogs. The antigenic performance of the protein was evaluated by means of ELISA assays using sera from symptomatic (n = 25), asymptomatic (n = 34) and non-infected dogs (n = 36) using ELISA. In addition, sera from dogs experimentally infected with Trypanosoma cruzi (n = 49) and naturally infected with Babesia sp. (n = 8) were tested to evaluate possible cross-reactivity. A crude soluble antigen (CSA) of Leishmania was used as an antigen control and K39 and K26 were used as reference antigens because they are already widely used in commercial tests. rDyn-1-based assay showed the highest sensitivity (97%) compared to the antigens K39 (88%), K26 (86%) and crude extract (95%). The highest specificity among the tests was also obtained with the protein rDyn-1 (94%), compared with the other antigens K39 (81%), K26 (87%), and crude extract (77%). This study showed that the rDyn-1 ELISA assay was able to identify 100% of asymptomatic dogs, establishing its potential as a target for the diagnosis of canine leishmaniasis.


Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Animais , Cães , Leishmania infantum/genética , Dinamina I , Antígenos de Protozoários/genética , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/veterinária , Ensaio de Imunoadsorção Enzimática , Testes Sorológicos/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Anticorpos Antiprotozoários , Sensibilidade e Especificidade
15.
Parasit Vectors ; 16(1): 461, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115102

RESUMO

Toxoplasma gondii is an intracellular parasite with a worldwide distribution. Toxoplasma gondii infections are of great concern for public health, and their impact is usually most severe in pregnant women and their foetuses, and in immunocompromised individuals. Displaying considerable genetic diversity, T. gondii strains differ widely according to geographical location, with archetypal strains predominantly found in the Northern Hemisphere and non-archetypal (atypical) strains, with highly diverse genotypes, found mainly in South America. In this review, we present an overview of the identification and distribution of non-archetypal strains of T. gondii. Special attention is paid to the strains that have been isolated in Brazil, their interaction with the host immunological response, and their impact on disease outcomes. The genetic differences among the strains are pivotal to the distinct immunological responses that they elicit. These differences arise from polymorphisms of key proteins released by the parasite, which represent important virulence factors. Infection with divergent non-archetypal strains can lead to unusual manifestations of the disease, even in immunocompetent individuals.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Feminino , Humanos , Gravidez , Animais , Toxoplasmose/parasitologia , Genótipo , Polimorfismo Genético , Brasil/epidemiologia , Variação Genética , Toxoplasmose Animal/parasitologia
16.
PLoS Negl Trop Dis ; 17(8): e0011535, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37540724

RESUMO

Endemic in Brazil, visceral leishmaniasis (VL) is a zoonotic infection that is among the most important parasitic diseases transmitted by vectors. Dogs are the main reservoirs of canine leishmaniasis (CanL) and their identification is used in some countries as part of disease prevention and control measures in the canine and human population. In this context, serological tests are necessary, composed of antigens capable of correctly identifying infected dogs, minimizing the number of false-negative cases. This study aimed to identify more immunoreactive peptides derived from two previously described whole proteins (rDyn-1 and rKDDR-plus) and compare their performance to the control antigens rK39 and the crude extract for the detection of dogs infected with L. infantum, especially the asymptomatic ones. The three selected peptides and a mixture of them, along with the rDyn-1, rKDDR-plus, rK39, and crude extract antigens were evaluated using indirect ELISA with sera samples from 186 dogs with CanL, being asymptomatic (n = 50), symptomatic (n = 50), co-infected (n = 19), infected with Babesia sp. (n = 7), Ehrlichia sp. (n = 6), T. cruzi (n = 20) and uninfected (n = 34). The results showed that the rDyn-1 protein and the peptide mixture had the highest sensitivity (100% and 98.32%, respectively) and specificity (97.01 and 98.51, respectively). A high degree of kappa agreement was found for rDyn-1 protein (0.977), mixed peptides (0.965), rKDDR-plus protein (0.953), K-plus peptide 1 (0.930) and Dyn-1 peptide (0.893). The mixture of peptides showed the highest likelihood (65.87). The ELISA using the mixture of peptides and the rDyn-1 protein showed high performance for CanL serodiagnosis. More mix combinations of the peptides and additional extended field tests with a larger sample size are recommended.


Assuntos
Doença de Chagas , Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Humanos , Cães , Animais , Antígenos de Protozoários , Sensibilidade e Especificidade , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/veterinária , Leishmaniose Visceral/epidemiologia , Peptídeos , Immunoblotting , Oligopeptídeos , Ensaio de Imunoadsorção Enzimática/métodos , Testes Sorológicos/métodos , Doenças do Cão/epidemiologia , Anticorpos Antiprotozoários
17.
Vaccine ; 41(37): 5400-5411, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37479612

RESUMO

Leishmania spp. and Trypanosoma cruzi are parasitic kinetoplastids of great medical and epidemiological importance since they are responsible for thousands of deaths and disability-adjusted life-years annually, especially in low- and middle-income countries. Despite efforts to minimize their impact, current prevention measures have failed to fully control their spread. There are still no vaccines available. Taking into account the genetic similarity within the Class Kinetoplastida, we selected CD8+ T cell epitopes preserved among Leishmania spp. and T. cruzi to construct a multivalent and broad-spectrum chimeric polyprotein vaccine. In addition to inducing specific IgG production, immunization with the vaccine was able to significantly reduce parasite burden in the colon, liver and skin lesions from T. cruzi, L. infantum and L. mexicana challenged mice, respectively. These findings were supported by histopathological analysis, which revealed decreased inflammation in the colon, a reduced number of degenerated hepatocytes and an increased proliferation of connective tissue in the skin lesions of the corresponding T. cruzi, L. infantum and L. mexicana vaccinated and challenged mice. Collectively, our results support the protective effect of a polyprotein vaccine approach and further studies will elucidate the immune profile associated with this protection. Noteworthy, our results act as conceptual proof that a single multi-kinetoplastida vaccine can be used effectively to control different infectious etiologies, which in turn can have a profound impact on the development of a new generation of vaccines.


Assuntos
Doença de Chagas , Leishmania , Leishmaniose , Parasitos , Trypanosoma cruzi , Humanos , Animais , Camundongos , Vacinas Combinadas , Leishmaniose/prevenção & controle , Doença de Chagas/prevenção & controle , Proteínas Recombinantes de Fusão
18.
Brain Behav Immun Health ; 30: 100652, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37396335

RESUMO

Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses.

19.
Eur J Med Chem ; 255: 115400, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130472

RESUMO

Malaria can be caused by several Plasmodium species and the development of an effective vaccine is challenging. Currently, the most effective tool to control the disease is the administration of specific chemotherapy; however, resistance to the frontline antimalarials is one of the major problems in malaria control and thus the development of new drugs becomes urgent. The study presented here sought to evaluate the antimalarial activities of compounds derived from 2-amino-1,4-naphthoquinones containing 1,2,3-triazole using in vivo and in vitro models. 1H-1,2,3-Triazole 2-amino-1,4-naphthoquinone derivatives were synthesized and evaluated for antimalarial activity in vitro, using P. falciparum W2 chloroquine (CQ) resistant strain and in vivo using the murine-P. berghei ANKA strain. Acute toxicity was determined as established by the OECD (2001). Cytotoxicity was evaluated against HepG2 and Vero mammalian cell lines. Transmission electron microscopy of the Plasmodium falciparum trophozoite (early and late stages) was used to evaluate the action of compounds derived at ultra-structural level. The compounds displayed low cytotoxicity CC50 > 100 µM, neither did they cause hemolysis at the tested doses and nor the signs of toxicity in the in vivo acute toxicity test. Among the five compounds tested, one showed IC50 values in submicromolar range of 0.8 µM. Compounds 7, 8 and 11 showed IC50 values < 5 µM, and selectivity index (SI) ranging from 6.8 to 343 for HepG2, and from 13.7 to 494.8 for Vero cells. Compounds 8 and 11 were partially active against P. berghei induced parasitemia in vivo. Analysis of the ultrastructural changes associated with the treatment of these two compounds, showed trophozoites with completely degraded cytoplasm, loss of membrane integrity, organelles in the decomposition stage and possible food vacuole deterioration. Our results indicated that compounds 8 and 11 may be considered hit molecules for antimalarial drug discovery platform and deserve further optimization studies.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Naftoquinonas , Chlorocebus aethiops , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/química , Naftoquinonas/química , Células Vero , Triazóis/farmacologia , Triazóis/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Plasmodium berghei , Mamíferos
20.
Vaccines (Basel) ; 11(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36679956

RESUMO

Visceral leishmaniasis (VL) is a fatal disease caused by the protozoa Leishmania infantum for which dogs are the main reservoirs. A vaccine against canine visceral leishmaniasis (CVL) could be an important tool in the control of human and CVL by reducing the infection pressure of L. infantum. Despite the CVL vaccine available on the market, the Brazilian Ministry of Health did not implement the use of it in their control programs. In this sense, there is an urgent need to develop more efficient vaccines. In this study, the association between two polymeric nanoformulations, (poly (D, L-lactic) acid (PLA) polymer) loading Leishmania amazonensis antigens, was evaluated as a potential immunobiological agent against VL using golden hamsters as an experimental model. The results indicated that no significant adverse reactions were observed in animals vaccinated with LAPSmP. LAPSmP presented similar levels of total anti-Leishmania IgG as compared to LAPSmG. The LAPSmP and LAPSmG groups showed an intense reduction in liver and spleen parasitic load by qPCR. The LAPSmP and LAPSmG vaccines showed exceptional results, indicating that they may be promising candidates as a VL vaccine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa