Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transfusion ; 61(1): 246-254, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098316

RESUMO

BACKGROUND: The Scianna (SC) blood group system comprises seven antigens. They reside on the erythroblast membrane-associated glycoprotein (ERMAP). The ERMAP and RHCE genes are juxtaposed to each other on chromosome 1. We report a novel SC antigen. STUDY DESIGN AND METHODS: Blood samples came from a patient and his two sisters in Saudi Arabia. To investigate the antibody specificity we used the column agglutination technique and soluble recombinant ERMAP protein. The significance of anti-SCAR was evaluated by the transfusion history and a monocyte monolayer assay. We determined the genomic sequence of ERMAP and RHCE genes. RESULTS: The patient's serum showed an antibody of titer 8 against a high-prevalence antigen. The soluble recombinant ERMAP protein inhibited the antibody. The propositus genotyped homozygous for an ERMAP:c.424C>G variant, for which his sisters were heterozygous. The c.424C>G variant occurred in the SC*01 allele in one haplotype with the RHCE*03 (RHCE*cE) allele. No signs of hemolysis occurred following an incompatible blood transfusion. The monocyte monolayer assay was negative. CONCLUSIONS: We characterized a high-prevalence antigen, with the proposed name "SCAR," which is the eighth antigen of the Scianna blood group system (proposed designation 013.008). Individuals homozygous for ERMAP:p.(Gln142Glu) protein variant can produce anti-SCAR. Although we did not observe any sign of hemolysis at this time, the anti-SCAR prompted a change of the treatment regimen. A review of the known reports indicated that all SC alloantibodies of sufficient titer should be considered capable of causing hemolysis.


Assuntos
Anemia Falciforme/terapia , Antígenos de Grupos Sanguíneos/genética , Butirofilinas/genética , Reação Transfusional/sangue , Alelos , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Antidrepanocíticos/uso terapêutico , Antígenos de Grupos Sanguíneos/imunologia , Transfusão de Sangue/métodos , Butirofilinas/imunologia , Feminino , Genótipo , Haplótipos , Heterozigoto , Homozigoto , Humanos , Hidroxiureia/uso terapêutico , Isoanticorpos/genética , Masculino , Monócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Prevalência , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Arábia Saudita/epidemiologia , Reação Transfusional/genética , Adulto Jovem , Talassemia beta/complicações
2.
Transfusion ; 58(11): 2693-2704, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30312480

RESUMO

BACKGROUND: The 1000 Genomes Project provides a database of genomic variants from whole genome sequencing of 2504 individuals across five continental superpopulations. This database can enrich our background knowledge of worldwide blood group variant geographic distribution and identify novel variants of potential clinical significance. STUDY DESIGN AND METHODS: The 1000 Genomes database was analyzed to 1) expand knowledge about continental distributions of known blood group variants, 2) identify novel variants with antigenic potential and their geographic association, and 3) establish a baseline scaffold of chromosomal coordinates to translate next-generation sequencing output files into a predicted red blood cell (RBC) phenotype. RESULTS: Forty-two genes were investigated. A total of 604 known variants were mapped to the GRCh37 assembly; 120 of these were reported by 1000 Genomes in at least one superpopulation. All queried variants, including the ACKR1 promoter silencing mutation, are located within exon pull-down boundaries. The analysis yielded 41 novel population distributions for 34 known variants, as well as 12 novel blood group variants that warrant further validation and study. Four prediction algorithms collectively flagged 79 of 109 (72%) known antigenic or enzymatically detrimental blood group variants, while 4 of 12 variants that do not result in an altered RBC phenotype were flagged as deleterious. CONCLUSION: Next-generation sequencing has known potential for high-throughput and extended RBC phenotype prediction; a database of GRCh37 and GRCh38 chromosomal coordinates for 120 worldwide blood group variants is provided as a basis for this clinical application.


Assuntos
Genoma Humano/genética , Genômica/métodos , Algoritmos , Antígenos de Grupos Sanguíneos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
3.
Blood Transfus ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37677094

RESUMO

BACKGROUND: Among 710 RHD alleles, 3 alleles have been shown to express CcEe antigens and, among 67 hybrid alleles of the RHD gene, 2 alleles have evolved to include RHCE exons 4-9. No breakpoint region had been described for such RHD-CE(4-9)-D hybrid alleles. In the Kidd blood group system, the JK*02N.01 null allele is found with high prevalence in the Polynesian population. We investigated a self-identified Pacific Islander with discrepant serologic and molecular results for his C and Jkb antigens. Another 8 samples with genotype-phenotype discrepancies in the Kidd blood group system were assessed. MATERIALS AND METHODS: A combination of published molecular methods and commercial kits were applied to analyze the RHD, RHCE, and SLC14A1 gene sequences, as were hemagglutination tests to determine the serologic phenotypes. RESULTS: Nucleotide sequencing of the RHD gene in the index case, including relevant intronstretches, and cDNA identified an RHD-CE(4-9)-D hybrid allele. Nucleotide sequencing of his RHCE gene confirmed the presence of 2 RHCE*ce alleles despite expressing the C antigen. Sequencing of his SLC14A1 gene documented the JK*02N.01 null allele. In the other 8 samples, 5 previously known SLC14A1 nucleotide substitutions were identified. The JK*02N.17 allele was determined to be Jkb-positive. DISCUSSION: We determined the 2 breakpoint regions of his RHD-CE(4-9)-D hybrid allele, which was likely distinct from the 2 previously published hybrid alleles due to the differences in the linked RHCE allele. His RHD variant was shown to express the C antigen. An SLC14A1 substitution was underlying his unexpected Jkb-negative phenotype. In a quality improvement project, we resolved 8 samples with similarly discrepant results between Jk serology and red cell genotyping.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa