Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Schizophr Res ; 254: 178-189, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921403

RESUMO

OBJECTIVE: Complexity and lack of standardization have mostly limited the use of event-related potentials (ERPs) and quantitative EEG (QEEG) biomarkers in drug development to small early phase trials. We present results from a clinical study on healthy volunteers (HV) and patients with schizophrenia (SZ) that assessed test-retest, group differences, variance, and correlation with functional assessments for ERP and QEEG measures collected at clinical and commercial trial sites with standardized instrumentation and methods, and analyzed through an automated data analysis pipeline. METHODS: 81 HV and 80 SZ were tested at one of four study sites. Subjects were administered two ERP/EEG testing sessions on separate visits. Sessions included a mismatch negativity paradigm, a 40 Hz auditory steady-state response paradigm, an eyes-closed resting state EEG, and an active auditory oddball paradigm. SZ subjects were also tested on the Brief Assessment of Cognition (BAC), Positive and Negative Syndrome Scale (PANSS), and Virtual Reality Functional Capacity Assessment Tool (VRFCAT). RESULTS: Standardized ERP/EEG instrumentation and methods ensured few test failures. The automated data analysis pipeline allowed for near real-time analysis with no human intervention. Test-retest reliability was fair-to-excellent for most of the outcome measures. SZ subjects showed significant deficits in ERP and QEEG measures consistent with published academic literature. A subset of ERP and QEEG measures correlated with functional assessments administered to the SZ subjects. CONCLUSIONS: With standardized instrumentation and methods, complex ERP/EEG testing sessions can be reliably performed at clinical and commercial trial sites to produce high-quality data in near real-time.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Reprodutibilidade dos Testes , Voluntários Saudáveis , Eletroencefalografia/métodos , Biomarcadores , Potenciais Evocados Auditivos/fisiologia
2.
Neuroscience ; 134(4): 1423-30, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16039793

RESUMO

Sharp wave and associated fast oscillatory ripples (140-200 Hz) in the cornu ammonis 1 region are the most synchronous hippocampal patterns in the adult rat. Spike sequences associated with sharp waves are believed to play a critical role in transferring transient memories from the hippocampus to the neocortex and the emergence of superfast ripples is pathognostic in temporal lobe epilepsy. Sharp waves in cornu ammonis 1 stratum radiatum are induced by a strong depolarization by the cornu ammonis 3 Schaffer collaterals, due to the synchronous discharge of cornu ammonis 3 pyramidal cells. Although during the first postnatal week, sharp-wave events are associated with hippocampal unit bursts in the pyramidal layer, ripple oscillations are absent. We investigated the emergence of fast-field oscillations in rat pups ranging from postnatal day 12-20 by recording with wire tetrodes in freely behaving pups and with 16-site linear silicon probes in head fixed animals. Cornu ammonis 1 pyramidal cell layer was determined by the presence of multiple unit activity and a reversal of the field potential in the deeper electrode sites. On-line verification of the recording sites was determined via an evoked response to commissural stimulation, showing a clear reversal in the field potential. Sharp wave-associated fast-field oscillations did not begin to emerge until the end of the second postnatal week and showed a gradual increase until day 18. Once ripples emerged, the intra-ripple frequency assumed adult values. The developmental time course of the ripple parallels the switch in the GABA(A) receptor-mediated signaling from excitation to inhibition. The time course may also reflect hitherto unidentified emergence of neuronal gap junctions.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Relógios Biológicos , Estimulação Elétrica , Eletroencefalografia , Masculino , Ratos , Ratos Sprague-Dawley
3.
Neuroscience ; 136(3): 697-713, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16344145

RESUMO

The basal forebrain refers to heterogeneous structures located close to the medial and ventral surfaces of the cerebral hemispheres. It contains diverse populations of neurons, including the cholinergic cortically projecting cells that show severe loss in Alzheimer's and related neurodegenerative diseases. The basal forebrain does not display any cytoarchitectural or other structural features that make it easy to demarcate functional boundaries, a problem that allowed different investigators to propose different organizational schemes. The present paper uses novel three-dimensional reconstructions and numerical analyses for studying the spatial organization of four major basal forebrain cell populations, the cholinergic, parvalbumin, calbindin and calretinin containing neurons in the rat. Our analyses suggest that the distribution of these four cell populations is not random but displays a general pattern of association. Within the cholinergic space (i.e. the volume occupied by the cortically projecting cholinergic cell bodies) the three other cell types form twisted bands along the longitudinal axis of a central dense core of cholinergic cells traversing the traditionally defined basal forebrain regions, (i.e. the medial septum, diagonal bands, the substantia innominata, pallidal regions and the bed nucleus of the stria terminalis). At a smaller scale, the different cell types within the cholinergic space occupy overlapping high-density cell clusters that are either chemically uniform or mixed. However, the cell composition of these high-density clusters is regionally specific. The proposed scheme of basal forebrain organization, using cell density or density relations as criteria, offers a new perspective on structure-function relationship, unconstrained by traditional region boundaries.


Assuntos
Acetilcolina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Imageamento Tridimensional , Neurônios/metabolismo , Prosencéfalo/citologia , Animais , Contagem de Células/métodos , Masculino , Neurônios/classificação , Neurônios/citologia , Prosencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
4.
Neuroscience ; 116(1): 201-11, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12535953

RESUMO

Genetic engineering of the mouse brain allows investigators to address novel hypotheses in vivo. Because of the paucity of information on the network patterns of the mouse hippocampus, we investigated the electrical patterns in the behaving animal using multisite silicon probes and wire tetrodes. Theta (6-9 Hz) and gamma (40-100 Hz) oscillations were present during exploration and rapid eye movement sleep. Gamma power and theta power were comodulated and gamma power varied as a function of the theta cycle. Pyramidal cells and putative interneurons were phase-locked to theta oscillations. During immobility, consummatory behaviors and slow-wave sleep, sharp waves were present in cornu ammonis region CA1 of the hippocampus stratum radiatum associated with 140-200-Hz "ripples" in the pyramidal cell layer and population burst of CA1 neurons. In the hilus, large-amplitude "dentate spikes" occurred in association with increased discharge of hilar neurons. The amplitude of field patterns was larger in the mouse than in the rat, likely reflecting the higher neuron density in a smaller brain. We suggest that the main hippocampal network patterns are mediated by similar pathways and mechanisms in mouse and rat.


Assuntos
Hipocampo/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Animais , Eletrofisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sono REM , Ritmo Teta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa