Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 630(8018): 943-949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898271

RESUMO

Spatial transcriptomics measures in situ gene expression at millions of locations within a tissue1, hitherto with some trade-off between transcriptome depth, spatial resolution and sample size2. Although integration of image-based segmentation has enabled impactful work in this context, it is limited by imaging quality and tissue heterogeneity. By contrast, recent array-based technologies offer the ability to measure the entire transcriptome at subcellular resolution across large samples3-6. Presently, there exist no approaches for cell type identification that directly leverage this information to annotate individual cells. Here we propose a multiscale approach to automatically classify cell types at this subcellular level, using both transcriptomic information and spatial context. We showcase this on both targeted and whole-transcriptome spatial platforms, improving cell classification and morphology for human kidney tissue and pinpointing individual sparsely distributed renal mouse immune cells without reliance on image data. By integrating these predictions into a topological pipeline based on multiparameter persistent homology7-9, we identify cell spatial relationships characteristic of a mouse model of lupus nephritis, which we validate experimentally by immunofluorescence. The proposed framework readily generalizes to new platforms, providing a comprehensive pipeline bridging different levels of biological organization from genes through to tissues.


Assuntos
Células , Perfilação da Expressão Gênica , Espaço Intracelular , Rim , Transcriptoma , Animais , Feminino , Humanos , Camundongos , Células/classificação , Células/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Perfilação da Expressão Gênica/métodos , Rim/citologia , Rim/imunologia , Rim/metabolismo , Rim/patologia , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Reprodutibilidade dos Testes , Espaço Intracelular/genética , Espaço Intracelular/metabolismo
2.
Sci Immunol ; 9(98): eadd4874, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121196

RESUMO

Dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is characterized by a failure of the germinal center response, a process involving the proliferation and positive selection of antigen-specific B cells. Here, we describe how DOCK8-deficient B cells are blocked at a light-zone checkpoint in the germinal centers of immunized mice, where they are unable to respond to T cell-dependent survival and selection signals and consequently differentiate into plasma cells or memory B cells. Although DOCK8-deficient B cells can acquire and present antigen to initiate activation of cognate T cells, integrin up-regulation, B cell-T cell conjugate formation, and costimulation are insufficient for sustained B cell and T cell activation when antigen availability is limited. Our findings provide an explanation for the failure of the humoral response in DOCK8 immunodeficiency syndrome and insight into how the level of available antigen modulates B cell-T cell cross-talk to fine-tune humoral immune responses and immunological memory.


Assuntos
Linfócitos B , Fatores de Troca do Nucleotídeo Guanina , Camundongos Endogâmicos C57BL , Linfócitos T , Animais , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Linfócitos B/imunologia , Camundongos , Linfócitos T/imunologia , Ativação Linfocitária/imunologia , Camundongos Knockout , Antígenos/imunologia , Centro Germinativo/imunologia
3.
Bioinform Adv ; 4(1): vbae085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911824

RESUMO

Motivation: Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps. Results: We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells. Availability and implementation: EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa