Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(4): 773-5, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813604

RESUMO

Mapping synaptic connections and projections is crucial for understanding brain dynamics and function. In a recent issue of Nature, Oh et al. present a wiring diagram of the whole mouse brain, where standardized labeling, tracing, and imaging of axonal connections reveal new details in the network organization of neuronal connectivity.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/citologia , Conectoma , Animais , Masculino
2.
Proc Natl Acad Sci U S A ; 121(16): e2304704121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593073

RESUMO

Childhood maltreatment (CM) leads to a lifelong susceptibility to mental ill-health which might be reflected by its effects on adult brain structure, perhaps indirectly mediated by its effects on adult metabolic, immune, and psychosocial systems. Indexing these systemic factors via body mass index (BMI), C-reactive protein (CRP), and rates of adult trauma (AT), respectively, we tested three hypotheses: (H1) CM has direct or indirect effects on adult trauma, BMI, and CRP; (H2) adult trauma, BMI, and CRP are all independently related to adult brain structure; and (H3) childhood maltreatment has indirect effects on adult brain structure mediated in parallel by BMI, CRP, and AT. Using path analysis and data from N = 116,887 participants in UK Biobank, we find that CM is related to greater BMI and AT levels, and that these two variables mediate CM's effects on CRP [H1]. Regression analyses on the UKB MRI subsample (N = 21,738) revealed that greater CRP and BMI were both independently related to a spatially convergent pattern of cortical effects (Spearman's ρ = 0.87) characterized by fronto-occipital increases and temporo-parietal reductions in thickness. Subcortically, BMI was associated with greater volume, AT with lower volume and CPR with effects in both directions [H2]. Finally, path models indicated that CM has indirect effects in a subset of brain regions mediated through its direct effects on BMI and AT and indirect effects on CRP [H3]. Results provide evidence that childhood maltreatment can influence brain structure decades after exposure by increasing individual risk toward adult trauma, obesity, and inflammation.


Assuntos
Encéfalo , Maus-Tratos Infantis , Adulto , Humanos , Criança , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteína C-Reativa/metabolismo , Inflamação/metabolismo , Obesidade/complicações , Maus-Tratos Infantis/psicologia
3.
Proc Natl Acad Sci U S A ; 121(33): e2314074121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39121162

RESUMO

Adolescent development of human brain structural and functional networks is increasingly recognized as fundamental to emergence of typical and atypical adult cognitive and emotional proodal magnetic resonance imaging (MRI) data collected from N [Formula: see text] 300 healthy adolescents (51%; female; 14 to 26 y) each scanned repeatedly in an accelerated longitudinal design, to provide an analyzable dataset of 469 structural scans and 448 functional MRI scans. We estimated the morphometric similarity between each possible pair of 358 cortical areas on a feature vector comprising six macro- and microstructural MRI metrics, resulting in a morphometric similarity network (MSN) for each scan. Over the course of adolescence, we found that morphometric similarity increased in paralimbic cortical areas, e.g., insula and cingulate cortex, but generally decreased in neocortical areas, and these results were replicated in an independent developmental MRI cohort (N [Formula: see text] 304). Increasing hubness of paralimbic nodes in MSNs was associated with increased strength of coupling between their morphometric similarity and functional connectivity. Decreasing hubness of neocortical nodes in MSNs was associated with reduced strength of structure-function coupling and increasingly diverse functional connections in the corresponding fMRI networks. Neocortical areas became more structurally differentiated and more functionally integrative in a metabolically expensive process linked to cortical thinning and myelination, whereas paralimbic areas specialized for affective and interoceptive functions became less differentiated, as hypothetically predicted by a developmental transition from periallocortical to proisocortical organization of the cortex. Cytoarchitectonically distinct zones of the human cortex undergo distinct neurodevelopmental programs during typical adolescence.


Assuntos
Imageamento por Ressonância Magnética , Neocórtex , Humanos , Adolescente , Feminino , Masculino , Neocórtex/diagnóstico por imagem , Neocórtex/crescimento & desenvolvimento , Neocórtex/fisiologia , Adulto , Adulto Jovem , Mapeamento Encefálico/métodos , Desenvolvimento do Adolescente/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia
4.
Mol Psychiatry ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271754

RESUMO

Transcriptomic profiles are important indicators for molecular mechanisms and pathways involved in major depressive disorder (MDD) and its different phenotypes, such as immunometabolic depression. We performed whole-transcriptome and pathway analyses on 139 individuals from the observational, case-control, BIOmarkers in DEPression (BIODEP) study, 105 with MDD and 34 controls. We divided MDD participants based on levels of inflammation, as measured by serum high-sensitivity C-reactive protein (CRP), in n = 39 'not inflamed' (CRP < 1 mg/L), n = 31 with 'elevated CRP' (1-3 mg/L), and n = 35 with 'low-grade inflammation' (>3 mg/L). We performed whole-blood RNA sequencing using Illumina NextSeq 550 and statistical analyses with the Deseq2 package for R statistics (RUV-corrected) and subsequent pathway analyses with Ingenuity Pathway Analysis. Immunometabolic pathways were activated in individuals with CRP > 1 mg/L, although surprisingly the CRP 1-3 group showed stronger immune activation than the CRP > 3 group. The main pathways identified in the comparison between CRP < 1 group and controls were cell-cycle-related, which may be protective against immunometabolic abnormalities in this 'non-inflamed' depressed group. We further divided MDD participants based on exposure and response to antidepressants (n = 47 non-responders, n = 37 responders, and n = 22 unmedicated), and identified specific immunomodulatory and neuroprotective pathways in responders (especially vs. non-responders), which could be relevant to treatment response. In further subgroup analyses, we found that the specific transcriptional profile of responders is independent of CRP levels, and that the inhibition of cell-cycle-related pathways in MDD with CRP < 1 mg/L is present only in those who are currently depressed, and not in the responders. The present study demonstrates immunometabolic and cell-cycle-related transcriptomic pathways associated with MDD and different (CRP-based and treatment-based) MDD phenotypes, while shedding light on potential molecular mechanisms that could prevent or facilitate an individual's trajectory toward immunometabolic depression and/or treatment-non-responsive depression. The recognition and integration of these mechanisms will facilitate a precision-medicine approach in MDD.

5.
Mol Psychiatry ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266711

RESUMO

The psychosis spectrum encompasses a heterogeneous range of clinical conditions associated with abnormal brain development. Detecting patterns of atypical neuroanatomical maturation across psychiatric disorders requires an interpretable metric standardized by age-, sex- and site-effect. The molecular and micro-architectural attributes that account for these deviations in brain structure from typical neurodevelopment are still unknown. Here, we aggregate structural magnetic resonance imaging data from 38,696 healthy controls (HC) and 1256 psychosis-related conditions, including first-degree relatives of schizophrenia (SCZ) and schizoaffective disorder (SAD) patients (n = 160), individuals who had psychotic experiences (n = 157), patients who experienced a first episode of psychosis (FEP, n = 352), and individuals with chronic SCZ or SAD (n = 587). Using a normative modeling approach, we generated centile scores for cortical gray matter (GM) phenotypes, identifying deviations in regional volumes below the expected trajectory for all conditions, with a greater impact on the clinically diagnosed ones, FEP and chronic. Additionally, we mapped 46 neurobiological features from healthy individuals (including neurotransmitters, cell types, layer thickness, microstructure, cortical expansion, and metabolism) to these abnormal centiles using a multivariate approach. Results revealed that neurobiological features were highly co-localized with centile deviations, where metabolism (e.g., cerebral metabolic rate of oxygen (CMRGlu) and cerebral blood flow (CBF)) and neurotransmitter concentrations (e.g., serotonin (5-HT) and acetylcholine (α4ß2) receptors) showed the most consistent spatial overlap with abnormal GM trajectories. Taken together these findings shed light on the vulnerability factors that may underlie atypical brain maturation during different stages of psychosis.

6.
Brain ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375207

RESUMO

Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.

7.
Proc Natl Acad Sci U S A ; 119(27): e2116673119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776541

RESUMO

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Assuntos
Desenvolvimento do Adolescente , Encéfalo , Conectoma , Adolescente , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura
8.
Brain Behav Immun ; 123: 717-724, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39414178

RESUMO

INTRODUCTION: Interferon-alpha (IFN-α) is a key mediator of antiviral immune responses used to treat Hepatitis-C virus (HCV) infection. Though clinically effective, IFN-α frequently induces functionally impairing mood and motivation symptoms, particularly fatigue. Unlike mood impairment, which typically emerges after weeks of treatment, fatigue tends to emerge and evolve rapidly, typically within hours of the first IFN-α injection. Despite being a major source of functional impairment during IFN-α and other immune-based therapies, the biological mechanisms underlying fatigue remain poorly understood. Here, we aimed to identify acute immune-response signatures to IFN-α that could predict the later development of fatigue. METHODS: In this exploratory study, we analyzed whole blood transcriptomics in a longitudinal sample of 27 HCV patients initiating IFN-α and Ribavirin therapy. Blood samples were obtained at baseline and 4½ hours after the first IFN-α dose and transcriptomic data was obtained using Affymetrix Human Gene 1.1 ST Array Strips. Gene expression data visualization and quality control were assessed using Partek Genomics Suite V6.6 and protein-protein interaction networks using STRING and Ingenuity Pathway Analysis (IPA). A Fatigue Visual Analogue Scale (fVAS) was utilized to record fatigue symptoms at baseline, 4½ hours and 4 weeks after initiation of treatment. RESULTS: IFN-α was associated with an upregulation of 526 transcripts and a downregulation of 228 genes, indicating a rapid transcriptomic response in whole blood within 4½ hours of injection. 93 genes were significantly positively correlated with changes in fatigue, with gene expression changes measured from baseline to 4.5 h and increases in fatigue assessed from baseline to week 4 on the fVAS. We identified a novel network of predominantly cytosolic ribosomal units and ubiquitin proteins implicated in modulating mTOR signaling that was associated with the development of fatigue 4 weeks after initiation of IFN-α treatment (p = 0.0078). CONCLUSION: Our findings suggest that acute activation of this anabolic/catabolic network by IFN-α may predispose to the experience of fatigue similar to evidence found in cancer-related fatigue. Further investigation is warranted to confirm the exploratory nature of these observations.

9.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811142

RESUMO

Brain structural covariance norms capture the coordination of neurodevelopmental programs between different brain regions. We develop and apply anatomical imbalance mapping (AIM), a method to measure and model individual deviations from these norms, to provide a lifespan map of morphological integration in the human cortex. In cross-sectional and longitudinal data, analysis of whole-brain average anatomical imbalance reveals a reproducible tightening of structural covariance by age 25 y, which loosens after the seventh decade of life. Anatomical imbalance change in development and in aging is greatest in the association cortex and least in the sensorimotor cortex. Finally, we show that interindividual variation in whole-brain average anatomical imbalance is positively correlated with a marker of human prenatal stress (birthweight disparity between monozygotic twins) and negatively correlated with general cognitive ability. This work provides methods and empirical insights to advance our understanding of coordinated anatomical organization of the human brain and its interindividual variation.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Variação Biológica da População , Córtex Cerebral/diagnóstico por imagem , Conectoma , Feminino , Humanos , Masculino
10.
Brain ; 145(11): 4097-4107, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36065116

RESUMO

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Assuntos
Lesões Encefálicas , COVID-19 , Influenza Humana , Humanos , Proteínas de Neurofilamentos , COVID-19/complicações , Biomarcadores , Autoanticorpos , Imunidade
11.
Cereb Cortex ; 32(18): 4128-4140, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35029670

RESUMO

Substantial progress has been made studying morphological changes in brain regions during adolescence, but less is known of network-level changes in their relationship. Here, we compare covariance networks constructed from the correlation of morphometric volumes across 135 brain regions of marmoset monkeys in early adolescence and adulthood. Substantial shifts are identified in the topology of structural covariance networks in the prefrontal cortex (PFC) and temporal lobe. PFC regions become more structurally differentiated and segregated within their own local network, hypothesized to reflect increased specialization after maturation. In contrast, temporal regions show increased inter-hemispheric covariances that may underlie the establishment of distributed networks. Regionally selective coupling of structural and maturational covariance is revealed, with relatively weak coupling in transmodal association areas. The latter may be a consequence of continued maturation within adulthood, but also environmental factors, for example, family size, affecting brain morphology. Advancing our understanding of how morphological relationships within higher-order brain areas mature in adolescence deepens our knowledge of the developing brain's organizing principles.


Assuntos
Callithrix , Imageamento por Ressonância Magnética , Animais , Encéfalo/anatomia & histologia , Córtex Pré-Frontal , Lobo Temporal
12.
Dev Psychopathol ; 35(5): 2253-2263, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493043

RESUMO

Childhood adversity is one of the strongest predictors of adolescent mental illness. Therefore, it is critical that the mechanisms that aid resilient functioning in individuals exposed to childhood adversity are better understood. Here, we examined whether resilient functioning was related to structural brain network topology. We quantified resilient functioning at the individual level as psychosocial functioning adjusted for the severity of childhood adversity in a large sample of adolescents (N = 2406, aged 14-24). Next, we examined nodal degree (the number of connections that brain regions have in a network) using brain-wide cortical thickness measures in a representative subset (N = 275) using a sliding window approach. We found that higher resilient functioning was associated with lower nodal degree of multiple regions including the dorsolateral prefrontal cortex, the medial prefrontal cortex, and the posterior superior temporal sulcus (z > 1.645). During adolescence, decreases in nodal degree are thought to reflect a normative developmental process that is part of the extensive remodeling of structural brain network topology. Prior findings in this sample showed that decreased nodal degree was associated with age, as such our findings of negative associations between nodal degree and resilient functioning may therefore potentially resemble a more mature structural network configuration in individuals with higher resilient functioning.


Assuntos
Experiências Adversas da Infância , Transtornos Mentais , Resiliência Psicológica , Humanos , Adolescente , Encéfalo/diagnóstico por imagem , Lobo Temporal , Imageamento por Ressonância Magnética
13.
Proc Natl Acad Sci U S A ; 117(26): 15253-15261, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541059

RESUMO

Regular drug use can lead to addiction, but not everyone who takes drugs makes this transition. How exactly drugs of abuse interact with individual vulnerability is not fully understood, nor is it clear how individuals defy the risks associated with drugs or addiction vulnerability. We used resting-state functional MRI (fMRI) in 162 participants to characterize risk- and resilience-related changes in corticostriatal functional circuits in individuals exposed to stimulant drugs both with and without clinically diagnosed drug addiction, siblings of addicted individuals, and control volunteers. The likelihood of developing addiction, whether due to familial vulnerability or drug use, was associated with significant hypoconnectivity in orbitofrontal and ventromedial prefrontal cortical-striatal circuits-pathways critically implicated in goal-directed decision-making. By contrast, resilience against a diagnosis of substance use disorder was associated with hyperconnectivity in two networks involving 1) the lateral prefrontal cortex and medial caudate nucleus and 2) the supplementary motor area, superior medial frontal cortex, and putamen-brain circuits respectively implicated in top-down inhibitory control and the regulation of habits. These findings point toward a predisposing vulnerability in the causation of addiction, related to impaired goal-directed actions, as well as countervailing resilience systems implicated in behavioral regulation, and may inform novel strategies for therapeutic and preventative interventions.


Assuntos
Estimulantes do Sistema Nervoso Central , Rede Nervosa/fisiologia , Transtornos Relacionados ao Uso de Substâncias , Adulto , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Psicologia
14.
Proc Natl Acad Sci U S A ; 117(41): 25911-25922, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989168

RESUMO

A characteristic of adaptive behavior is its goal-directed nature. An ability to act in a goal-directed manner is progressively refined during development, but this refinement can be impacted by the emergence of psychiatric disorders. Disorders of compulsivity have been framed computationally as a deficit in model-based control, and have been linked also to abnormal frontostriatal connectivity. However, the developmental trajectory of model-based control, including an interplay between its maturation and an emergence of compulsivity, has not been characterized. Availing of a large sample of healthy adolescents (n = 569) aged 14 to 24 y, we show behaviorally that over the course of adolescence there is a within-person increase in model-based control, and this is more pronounced in younger participants. Using a bivariate latent change score model, we provide evidence that the presence of higher compulsivity traits is associated with an atypical profile of this developmental maturation in model-based control. Resting-state fMRI data from a subset of the behaviorally assessed subjects (n = 230) revealed that compulsivity is associated with a less pronounced change of within-subject developmental remodeling of functional connectivity, specifically between the striatum and a frontoparietal network. Thus, in an otherwise clinically healthy population sample, in early development, individual differences in compulsivity are linked to the developmental trajectory of model-based control and a remodeling of frontostriatal connectivity.


Assuntos
Desenvolvimento do Adolescente , Comportamento Compulsivo/psicologia , Adolescente , Adulto , Comportamento Compulsivo/diagnóstico por imagem , Comportamento Compulsivo/fisiopatologia , Corpo Estriado/diagnóstico por imagem , Feminino , Objetivos , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
15.
Proc Natl Acad Sci U S A ; 117(6): 3248-3253, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31992644

RESUMO

Adolescent changes in human brain function are not entirely understood. Here, we used multiecho functional MRI (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in 298 healthy adolescents scanned 520 times. Participants were aged 14 to 26 y and were scanned on 1 to 3 occasions at least 6 mo apart. We found 2 distinct modes of age-related change in FC: "conservative" and "disruptive." Conservative development was characteristic of primary cortex, which was strongly connected at 14 y and became even more connected in the period from 14 to 26 y. Disruptive development was characteristic of association cortex and subcortical regions, where connectivity was remodeled: connections that were weak at 14 y became stronger during adolescence, and connections that were strong at 14 y became weaker. These modes of development were quantified using the maturational index (MI), estimated as Spearman's correlation between edgewise baseline FC (at 14 y, [Formula: see text]) and adolescent change in FC ([Formula: see text]), at each region. Disruptive systems (with negative MI) were activated by social cognition and autobiographical memory tasks in prior fMRI data and significantly colocated with prior maps of aerobic glycolysis (AG), AG-related gene expression, postnatal cortical surface expansion, and adolescent shrinkage of cortical thickness. The presence of these 2 modes of development was robust to numerous sensitivity analyses. We conclude that human brain organization is disrupted during adolescence by remodeling of FC between association cortical and subcortical areas.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Encéfalo/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Conectoma , Feminino , Movimentos da Cabeça/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
16.
Eur Child Adolesc Psychiatry ; 32(5): 797-807, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34792650

RESUMO

Characterizing patterns of mental phenomena in epidemiological studies of adolescents can provide insight into the latent organization of psychiatric disorders. This avoids the biases of chronicity and selection inherent in clinical samples, guides models of shared aetiology within psychiatric disorders and informs the development and implementation of interventions. We applied Gaussian mixture modelling to measures of mental phenomena from two general population cohorts: the Avon Longitudinal Study of Parents and Children (ALSPAC, n = 3018) and the Neuroscience in Psychiatry Network (NSPN, n = 2023). We defined classes according to their patterns of both positive (e.g. wellbeing and self-esteem) and negative (e.g. depression, anxiety, and psychotic experiences) phenomena. Subsequently, we characterized classes by considering the distribution of diagnoses and sex split across classes. Four well-separated classes were identified within each cohort. Classes primarily differed by overall severity of transdiagnostic distress rather than particular patterns of phenomena akin to diagnoses. Further, as overall severity of distress increased, so did within-class variability, the proportion of individuals with operational psychiatric diagnoses. These results suggest that classes of mental phenomena in the general population of adolescents may not be the same as those found in clinical samples. Classes differentiated only by overall severity support the existence of a general, transdiagnostic mental distress factor and have important implications for intervention.


Assuntos
Transtornos de Ansiedade , Ansiedade , Criança , Humanos , Adolescente , Estudos Longitudinais , Ansiedade/diagnóstico , Ansiedade/epidemiologia , Ansiedade/psicologia , Transtornos de Ansiedade/diagnóstico , Transtornos de Ansiedade/epidemiologia , Pais
17.
J Neurosci ; 41(33): 7015-7028, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34244364

RESUMO

Anatomical organization of the primate cortex varies as a function of total brain size, where possession of a larger brain is accompanied by disproportionate expansion of associative cortices alongside a relative contraction of sensorimotor systems. However, equivalent scaling maps are not yet available for regional white matter anatomy. Here, we use three large-scale neuroimaging datasets to examine how regional white matter volume (WMV) scales with interindividual variation in brain volume among typically developing humans (combined N = 2391: 1247 females, 1144 males). We show that WMV scaling is regionally heterogeneous: larger brains have relatively greater WMV in anterior and posterior regions of cortical white matter, as well as the genu and splenium of the corpus callosum, but relatively less WMV in most subcortical regions. Furthermore, regions of positive WMV scaling tend to connect previously-defined regions of positive gray matter scaling in the cortex, revealing a coordinated coupling of regional gray and white matter organization with naturally occurring variations in human brain size. However, we also show that two commonly studied measures of white matter microstructure, fractional anisotropy (FA) and magnetization transfer (MT), scale negatively with brain size, and do so in a manner that is spatially unlike WMV scaling. Collectively, these findings provide a more complete view of anatomic scaling in the human brain, and offer new contexts for the interpretation of regional white matter variation in health and disease.SIGNIFICANCE STATEMENT Recent work has shown that, in humans, regional cortical and subcortical anatomy show systematic changes as a function of brain size variation. Here, we show that regional white matter structures also show brain-size related changes in humans. Specifically, white matter regions connecting higher-order cortical systems are relatively expanded in larger human brains, while subcortical and cerebellar white matter tracts responsible for unimodal sensory or motor functions are relatively contracted. This regional scaling of white matter volume (WMV) is coordinated with regional scaling of cortical anatomy, but is distinct from scaling of white matter microstructure. These findings provide a more complete view of anatomic scaling of the human brain, with relevance for evolutionary, basic, and clinical neuroscience.


Assuntos
Imageamento por Ressonância Magnética/métodos , Substância Branca/anatomia & histologia , Adolescente , Adulto , Anisotropia , Variação Biológica Individual , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Criança , Estudos de Coortes , Corpo Caloso/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Feminino , Substância Cinzenta/anatomia & histologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Dinâmica não Linear , Tamanho do Órgão , Reprodutibilidade dos Testes , Adulto Jovem
18.
Nat Rev Neurosci ; 18(3): 131-146, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28148956

RESUMO

Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.


Assuntos
Encéfalo/patologia , Conectoma , Modelos Neurológicos , Vias Neurais/patologia , Neurônios/patologia , Animais , Encéfalo/fisiologia , Conectoma/métodos , Humanos , Vias Neurais/fisiologia , Neurociências/métodos
19.
Mol Psychiatry ; 26(12): 7709-7718, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34462574

RESUMO

Recent discovery of approximately 270 common genetic variants associated with schizophrenia has enabled polygenic risk scores (PRS) to be measured in the population. We hypothesized that normal variation in PRS would be associated with magnetic resonance imaging (MRI) phenotypes of brain morphometry and tissue composition. We used the largest extant genome-wide association dataset (N = 69,369 cases and N = 236,642 healthy controls) to measure PRS for schizophrenia in a large sample of adults from the UK Biobank (Nmax = 29,878) who had multiple micro- and macrostructural MRI metrics measured at each of 180 cortical areas, seven subcortical structures, and 15 major white matter tracts. Linear mixed-effect models were used to investigate associations between PRS and brain structure at global and regional scales, controlled for multiple comparisons. Polygenic risk was significantly associated with reduced neurite density index (NDI) at global brain scale, at 149 cortical regions, five subcortical structures, and 14 white matter tracts. Other microstructural parameters, e.g., fractional anisotropy, that were correlated with NDI were also significantly associated with PRS. Genetic effects on multiple MRI phenotypes were co-located in temporal, cingulate, and prefrontal cortical areas, insula, and hippocampus. Post-hoc bidirectional Mendelian randomization analyses provided preliminary evidence in support of a causal relationship between (reduced) thalamic NDI and (increased) risk of schizophrenia. Risk-related reduction in NDI is plausibly indicative of reduced density of myelinated axons and dendritic arborization in large-scale cortico-subcortical networks. Cortical, subcortical, and white matter microstructure may be linked to the genetic mechanisms of schizophrenia.


Assuntos
Esquizofrenia , Substância Branca , Encéfalo/patologia , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial/genética , Esquizofrenia/patologia , Substância Branca/patologia
20.
Mol Psychiatry ; 26(12): 7346-7354, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34535766

RESUMO

Inflammation is associated with depressive symptoms and innate immune mechanisms are likely causal in some cases of major depression. Systemic inflammation also perturbs brain function and microstructure, though how these are related remains unclear. We recruited N = 46 healthy controls, and N = 83 depressed cases stratified by CRP (> 3 mg/L: N = 33; < 3 mg/L: N = 50). All completed clinical assessment, venous blood sampling for C-reactive protein (CRP) assay, and brain magnetic resonance imaging (MRI). Micro-structural MRI parameters including proton density (PD), a measure of tissue water content, were measured at 360 cortical and 16 subcortical regions. Resting-state fMRI time series were correlated to estimate functional connectivity between individual regions, as well as the sum of connectivity (weighted degree) of each region. Multiple tests for regional analysis were controlled by the false discovery rate (FDR = 5%). We found that CRP was significantly associated with PD in precuneus, posterior cingulate cortex (pC/pCC) and medial prefrontal cortex (mPFC); and with functional connectivity between pC/pCC, mPFC and hippocampus. Depression was associated with reduced weighted degree of pC/pCC, mPFC, and other nodes of the default mode network (DMN). Thus CRP-related increases in proton density-a plausible marker of extracellular oedema-and changes in functional connectivity were anatomically co-localised with DMN nodes that also demonstrated significantly reduced hubness in depression. We suggest that effects of peripheral inflammation on DMN node micro-structure and connectivity may mediate inflammatory effects on depression.


Assuntos
Encéfalo , Depressão , Mapeamento Encefálico , Humanos , Inflamação , Imageamento por Ressonância Magnética/métodos , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa