RESUMO
BACKGROUND: The mammalian adipose tissue plays a central role in energy-balance control, whereas the avian visceral fat hardly expresses leptin, the key adipokine in mammals. Therefore, to assess the endocrine role of adipose tissue in birds, we compared the transcriptome and proteome between two metabolically different types of chickens, broilers and layers, bred towards efficient meat and egg production, respectively. RESULTS: Broilers and layer hens, grown up to sexual maturation under free-feeding conditions, differed 4.0-fold in weight and 1.6-fold in ovarian-follicle counts, yet the relative accumulation of visceral fat was comparable. RNA-seq and mass-spectrometry (MS) analyses of visceral fat revealed differentially expressed genes between broilers and layers, 1106 at the mRNA level (FDR ≤ 0.05), and 203 at the protein level (P ≤ 0.05). In broilers, Ingenuity Pathway Analysis revealed activation of the PTEN-pathway, and in layers increased response to external signals. The expression pattern of genes encoding fat-secreted proteins in broilers and layers was characterized in the RNA-seq and MS data, as well as by qPCR on visceral fat under free feeding and 24 h-feed deprivation. This characterization was expanded using available RNA-seq data of tissues from red junglefowl, and of visceral fat from broilers of different types. These comparisons revealed expression of new adipokines and secreted proteins (LCAT, LECT2, SERPINE2, SFTP1, ZP1, ZP3, APOV1, VTG1 and VTG2) at the mRNA and/or protein levels, with dynamic gene expression patterns in the selected chicken lines (except for ZP1; FDR/P ≤ 0.05) and feed deprivation (NAMPT, SFTPA1 and ZP3) (P ≤ 0.05). In contrast, some of the most prominent adipokines in mammals, leptin, TNF, IFNG, and IL6 were expressed at a low level (FPKM/RPKM< 1) and did not show differential mRNA expression neither between broiler and layer lines nor between fed vs. feed-deprived chickens. CONCLUSIONS: Our study revealed that RNA and protein expression in visceral fat changes with selective breeding, suggesting endocrine roles of visceral fat in the selected phenotypes. In comparison to gene expression in visceral fat of mammals, our findings points to a more direct cross talk of the chicken visceral fat with the reproductive system and lower involvement in the regulation of appetite, inflammation and insulin resistance.
Assuntos
Galinhas/genética , Gordura Intra-Abdominal/metabolismo , Reprodução/genética , Adipocinas/genética , Animais , Ingestão de Alimentos , Feminino , Perfilação da Expressão Gênica , Genômica , Gordura Intra-Abdominal/química , Nicotinamida Fosforribosiltransferase/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Proteômica , Proteína A Associada a Surfactante Pulmonar/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética , TranscriptomaRESUMO
BACKGROUND: A systems toxicology investigation comparing and integrating transcriptomic and proteomic results was conducted to develop holistic effects characterizations for the wildlife bird model, Northern bobwhite (Colinus virginianus) dosed with the explosives degradation product 2-amino-4,6-dinitrotoluene (2A-DNT). A subchronic 60 d toxicology bioassay was leveraged where both sexes were dosed via daily gavage with 0, 3, 14, or 30 mg/kg-d 2A-DNT. Effects on global transcript expression were investigated in liver and kidney tissue using custom microarrays for C. virginianus in both sexes at all doses, while effects on proteome expression were investigated in liver for both sexes and kidney in males, at 30 mg/kg-d. RESULTS: As expected, transcript expression was not directly indicative of protein expression in response to 2A-DNT. However, a high degree of correspondence was observed among gene and protein expression when investigating higher-order functional responses including statistically enriched gene networks and canonical pathways, especially when connected to toxicological outcomes of 2A-DNT exposure. Analysis of networks statistically enriched for both transcripts and proteins demonstrated common responses including inhibition of programmed cell death and arrest of cell cycle in liver tissues at 2A-DNT doses that caused liver necrosis and death in females. Additionally, both transcript and protein expression in liver tissue was indicative of induced phase I and II xenobiotic metabolism potentially as a mechanism to detoxify and excrete 2A-DNT. Nuclear signaling assays, transcript expression and protein expression each implicated peroxisome proliferator-activated receptor (PPAR) nuclear signaling as a primary molecular target in the 2A-DNT exposure with significant downstream enrichment of PPAR-regulated pathways including lipid metabolic pathways and gluconeogenesis suggesting impaired bioenergetic potential. CONCLUSION: Although the differential expression of transcripts and proteins was largely unique, the consensus of functional pathways and gene networks enriched among transcriptomic and proteomic datasets provided the identification of many critical metabolic functions underlying 2A-DNT toxicity as well as impaired PPAR signaling, a key molecular initiating event known to be affected in di- and trinitrotoluene exposures.
Assuntos
Compostos de Anilina/toxicidade , Colinus/metabolismo , Fígado/efeitos dos fármacos , Animais , Bioensaio/métodos , Relação Dose-Resposta a Droga , Substâncias Explosivas/toxicidade , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/métodosRESUMO
BACKGROUND: Mycoplasma hyopneumoniae causes respiratory disease in swine and contributes to the porcine respiratory disease complex, a major disease problem in the swine industry. The M. hyopneumoniae strain 232 genome is one of the smallest and best annotated microbial genomes, containing only 728 annotated genes and 691 known proteins. Standard protein databases for mass spectrometry only allow for the identification of known and predicted proteins, which if incorrect can limit our understanding of the biological processes at work. Proteogenomic mapping is a methodology which allows the entire 6-frame genome translation of an organism to be used as a mass spectrometry database to help identify unknown proteins as well as correct and confirm existing annotations. This methodology will be employed to perform an in-depth analysis of the M. hyopneumoniae proteome. RESULTS: Proteomic analysis indicates 483 of 691 (70%) known M. hyopneumoniae strain 232 proteins are expressed under the culture conditions given in this study. Furthermore, 171 of 328 (52%) hypothetical proteins have been confirmed. Proteogenomic mapping resulted in the identification of previously unannotated genes gatC and rpmF and 5-prime extensions to genes mhp063, mhp073, and mhp451, all conserved and annotated in other M. hyopneumoniae strains and Mycoplasma species. Gene prediction with Prodigal, a prokaryotic gene predicting program, completely supports the new genomic coordinates calculated using proteogenomic mapping. CONCLUSIONS: Proteogenomic mapping showed that the protein coding genes of the M. hyopneumoniae strain 232 identified in this study are well annotated. Only 1.8% of mapped peptides did not correspond to genes defined by the current genome annotation. This study also illustrates how proteogenomic mapping can be an important tool to help confirm, correct and append known gene models when using a genome sequence as search space for peptide mass spectra. Using a gene prediction program which scans for a wide variety of promoters can help ensure genes are accurately predicted or not missed completely. Furthermore, protein extraction using differential detergent fractionation effectively increases the number of membrane and cytoplasmic proteins identifiable my mass spectrometry.
Assuntos
Proteínas de Bactérias/genética , Mycoplasma hyopneumoniae/genética , Proteoma/genética , Mapeamento Cromossômico , Ontologia Genética , Genoma Bacteriano , Fases de Leitura Aberta , Espectrometria de Massas em Tandem , VirulênciaRESUMO
BACKGROUND: The mobilization and redistribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific T-cells and neutralizing antibodies (nAbs) during exercise is purported to increase immune surveillance and protect against severe coronavirus disease 2019 (COVID-19). We sought to determine if COVID-19 vaccination would elicit exercise-responsive SARS-CoV-2 T-cells and transiently alter nAb titers. METHODS: Eighteen healthy participants completed a 20-min bout of graded cycling exercise before and/or after receiving a COVID-19 vaccine. All major leukocyte subtypes were enumerated before, during, and after exercise by flow cytometry, and immune responses to SARS-CoV-2 were determined using whole blood peptide stimulation assays, T-cell receptor (TCR)-ß sequencing, and SARS-CoV-2 nAb serology. RESULTS: COVID-19 vaccination had no effect on the mobilization or egress of major leukocyte subsets in response to intensity-controlled graded exercise. However, non-infected participants had a significantly reduced mobilization of CD4+ and CD8+ naive T-cells, as well as CD4+ central memory T-cells, after vaccination (synthetic immunity group); this was not seen after vaccination in those with prior SARS-CoV-2 infection (hybrid immunity group). Acute exercise after vaccination robustly mobilized SARS-CoV-2 specific T-cells to blood in an intensity-dependent manner. Both groups mobilized T-cells that reacted to spike protein; however, only the hybrid immunity group mobilized T-cells that reacted to membrane and nucleocapsid antigens. nAbs increased significantly during exercise only in the hybrid immunity group. CONCLUSION: These data indicate that acute exercise mobilizes SARS-CoV-2 specific T-cells that recognize spike protein and increases the redistribution of nAbs in individuals with hybrid immunity.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Linfócitos T , Glicoproteína da Espícula de Coronavírus , Exercício FísicoRESUMO
AgBase (http://www.agbase.msstate.edu/) provides resources to facilitate modeling of functional genomics data and structural and functional annotation of agriculturally important animal, plant, microbe and parasite genomes. The website is redesigned to improve accessibility and ease of use, including improved search capabilities. Expanded capabilities include new dedicated pages for horse, cat, dog, cotton, rice and soybean. We currently provide 590 240 Gene Ontology (GO) annotations to 105 454 gene products in 64 different species, including GO annotations linked to transcripts represented on agricultural microarrays. For many of these arrays, this provides the only functional annotation available. GO annotations are available for download and we provide comprehensive, species-specific GO annotation files for 18 different organisms. The tools available at AgBase have been expanded and several existing tools improved based upon user feedback. One of seven new tools available at AgBase, GOModeler, supports hypothesis testing from functional genomics data. We host several associated databases and provide genome browsers for three agricultural pathogens. Moreover, we provide comprehensive training resources (including worked examples and tutorials) via links to Educational Resources at the AgBase website.
Assuntos
Agricultura , Bases de Dados Genéticas , Genômica , Modelos Genéticos , Animais , Animais Domésticos/genética , Gatos , Produtos Agrícolas/genética , Cães , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Software , Interface Usuário-ComputadorRESUMO
PURPOSE: Acute exercise redistributes large numbers of memory T cells, which may contribute to enhanced immune surveillance in regular exercisers. It is not known, however, if acute exercise promotes a broad or oligoclonal T-cell receptor (TCR) repertoire or evokes transcriptomic changes in "exercise-responsive" T-cell clones. METHODS: Healthy volunteers completed a graded bout of cycling exercise up to 80% VÌO 2max . DNA was extracted from peripheral blood mononuclear cells collected at rest, during exercise (EX), and 1 h after (+1H) exercise, and processed for deep TCR-ß chain sequencing and tandem single-cell RNA sequencing. RESULTS: The number of unique clones and unique rearrangements was decreased at EX compared with rest ( P < 0.01) and +1H ( P < 0.01). Productive clonality was increased compared with rest ( P < 0.05) and +1H ( P < 0.05), whereas Shannon's Index was decreased compared with rest ( P < 0.05) and +1H ( P < 0.05). The top 10 rearrangements in the repertoire were increased at EX compared with rest ( P < 0.05) and +1H ( P < 0.05). Cross-referencing TCR-ß sequences with a public database (VDJdb) revealed that exercise increased the number of clones specific for the most prevalent motifs, including Epstein-Barr virus, cytomegalovirus, and influenza A. We identified 633 unique exercise-responsive T-cell clones that were mobilized and/or egressed in response to exercise. Among these clones, there was an upregulation in genes related to cell death, cytotoxicity, and activation ( P < 0.05). CONCLUSIONS: Acute exercise promotes an oligoclonal T-cell repertoire by preferentially mobilizing the most dominant clones, several of which are specific to known viral antigens and display differentially expressed genes indicative of cytotoxicity, activation, and apoptosis.
Assuntos
Infecções por Vírus Epstein-Barr , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Leucócitos Mononucleares/metabolismo , Herpesvirus Humano 4/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Células Clonais/metabolismo , Exercício FísicoRESUMO
Epidemiological data suggest that physical activity protects against severe COVID-19 and improves clinical outcomes, but how exercise augments the SARS-CoV-2 viral immune response has yet to be elucidated. Here we determine the antigen-specific CD4 and CD8 T-cell and humoral immunity to exercise in non-vaccinated individuals with natural immunity to SARS CoV-2, using whole-blood SARS-CoV-2 peptide stimulation assays, IFN-γ ELISPOT assays, 8-color flow cytometry, deep T-cell receptor (TCR) ß sequencing, and anti-RBD-1 neutralizing antibody serology. We found that acute exercise reliably mobilized (â¼2.5-fold increase) highly functional SARS-CoV-2-specific T-cells to the blood compartment in those with natural immunity to the virus. The mobilized cells reacted with spike protein (including alpha (α) and delta (δ)-variants), membrane, and nucleocapsid peptides in those previously infected but not in controls. Both groups reliably mobilized T-cells reacting with Epstein-Barr viral peptides. Exercise mobilized SARS-CoV-2 specific T-cells maintained broad TCR-ß diversity with no impact on CDR3 length or V and J family gene usage. Exercise predominantly mobilized MHC I restricted (i.e. CD8+) SARS-CoV-2 specific T-cells that recognized ORF1ab, surface, ORF7b, nucleocapsid, and membrane proteins. SARS-CoV-2 neutralizing antibodies were transiently elevated â¼1.5-fold during exercise after infection. In conclusion, we provide novel data on a potential mechanism by which exercise could increase SARS-CoV-2 immunosurveillance via the mobilization and redistribution of antigen-specific CD8 T-cells and neutralizing antibodies. Further research is needed to define the tissue specific disease protective effects of exercise as SARS-CoV-2 continues to evolve, as well as the impact of COVID-19 vaccination on this response.
RESUMO
BACKGROUND: Computational methods for structural gene annotation have propelled gene discovery but face certain drawbacks with regards to prokaryotic genome annotation. Identification of transcriptional start sites, demarcating overlapping gene boundaries, and identifying regulatory elements such as small RNA are not accurate using these approaches. In this study, we re-visit the structural annotation of Mannheimia haemolytica PHL213, a bovine respiratory disease pathogen. M. haemolytica is one of the causative agents of bovine respiratory disease that results in about $3 billion annual losses to the cattle industry. We used RNA-Seq and analyzed the data using freely-available computational methods and resources. The aim was to identify previously unannotated regions of the genome using RNA-Seq based expression profile to complement the existing annotation of this pathogen. RESULTS: Using the Illumina Genome Analyzer, we generated 9,055,826 reads (average length ~76 bp) and aligned them to the reference genome using Bowtie. The transcribed regions were analyzed using SAMTOOLS and custom Perl scripts in conjunction with BLAST searches and available gene annotation information. The single nucleotide resolution map enabled the identification of 14 novel protein coding regions as well as 44 potential novel sRNA. The basal transcription profile revealed that 2,506 of the 2,837 annotated regions were expressed in vitro, at 95.25% coverage, representing all broad functional gene categories in the genome. The expression profile also helped identify 518 potential operon structures involving 1,086 co-expressed pairs. We also identified 11 proteins with mutated/alternate start codons. CONCLUSIONS: The application of RNA-Seq based transcriptome profiling to structural gene annotation helped correct existing annotation errors and identify potential novel protein coding regions and sRNA. We used computational tools to predict regulatory elements such as promoters and terminators associated with the novel expressed regions for further characterization of these novel functional elements. Our study complements the existing structural annotation of Mannheimia haemolytica PHL213 based on experimental evidence. Given the role of sRNA in virulence gene regulation and stress response, potential novel sRNA described in this study can form the framework for future studies to determine the role of sRNA, if any, in M. haemolytica pathogenesis.
Assuntos
Perfilação da Expressão Gênica/métodos , Mannheimia haemolytica/genética , Análise de Sequência de RNA/métodos , Transcriptoma , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Biologia Computacional/métodos , Genoma Bacteriano , Anotação de Sequência Molecular , Fases de Leitura Aberta , Óperon , RNA Bacteriano/genética , Doenças Respiratórias/microbiologia , Doenças Respiratórias/veterinária , Alinhamento de SequênciaRESUMO
Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial enteritis worldwide with poultry products being a major source of C. jejuni contamination. The chicken is the natural reservoir of C. jejuni where bacteria colonize the digestive tract of poultry, but rarely cause symptoms of disease. To understand the systemic molecular response mechanisms to C. jejuni infection in chickens, total splenic RNA was isolated and applied to a whole genome chicken microarray for comparison between infected (I) and non-infected (N) chickens within and between genetic lines A and B. There were more total splenic host genes responding to the infection in resistant line A than in susceptible line B. Specifically, genes for lymphocyte activation, differentiation and humoral response, and Ig light and heavy chain were upregulated in the resistant line. In the susceptible line, genes for regulation of erythrocyte differentiation, hemopoiesis, and RNA biosynthetic process were all downregulated. An interaction analysis between genetic lines and treatment demonstrated distinct defense mechanisms between lines: the resistant line promoted apoptosis and cytochrome c release from mitochondria, whereas the susceptible line responded with a downregulation of both functions. This was the first time that such systemic defensive mechanisms against C. jejuni infection have been reported. The results of this study revealed novel molecular mechanisms of the systemic host responses to C. jejuni infection in chickens that warrant further investigation.
Assuntos
Infecções por Campylobacter/genética , Campylobacter jejuni , Baço/microbiologia , Animais , Infecções por Campylobacter/microbiologia , Galinhas , Perfilação da Expressão Gênica , Regulação da Expressão GênicaRESUMO
The feasibility of short-read sequencing for genomic analysis was demonstrated for Fibroporia radiculosa, a copper-tolerant fungus that causes brown rot decay of wood. The effect of read quality on genomic assembly was assessed by filtering Illumina GAIIx reads from a single run of a paired-end library (75-nucleotide read length and 300-bp fragment size) at three different stringency levels and then assembling each data set with Velvet. A simple approach was devised to determine which filter stringency was "best." Venn diagrams identified the regions containing reads that were used in an assembly but were of a low-enough quality to be removed by a filter. By plotting base quality histograms of reads in this region, we judged whether a filter was too stringent or not stringent enough. Our best assembly had a genome size of 33.6 Mb, an N50 of 65.8 kb for a k-mer of 51, and a maximum contig length of 347 kb. Using GeneMark, 9,262 genes were predicted. TargetP and SignalP analyses showed that among the 1,213 genes with secreted products, 986 had motifs for signal peptides and 227 had motifs for signal anchors. Blast2GO analysis provided functional annotation for 5,407 genes. We identified 29 genes with putative roles in copper tolerance and 73 genes for lignocellulose degradation. A search for homologs of these 102 genes showed that F. radiculosa exhibited more similarity to Postia placenta than Serpula lacrymans. Notable differences were found, however, and their involvements in copper tolerance and wood decay are discussed.
Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico/genética , Genômica/métodos , Polyporaceae/genética , Análise de Sequência de DNA/métodos , Madeira/microbiologia , Biologia Computacional/métodos , Cobre/metabolismo , Cobre/farmacologia , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Tamanho do Genoma , Lignina/metabolismo , Polyporaceae/efeitos dos fármacos , Madeira/metabolismoRESUMO
Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.
Assuntos
Algoritmos , Inteligência Artificial , Peptídeos Penetradores de Células/química , Biologia Computacional/métodos , Bases de Dados de Proteínas , Sequência de Aminoácidos , Animais , Transporte Biológico , Linhagem Celular , Peptídeos Penetradores de Células/classificação , Peptídeos Penetradores de Células/metabolismo , Galinhas , Fluoresceína-5-Isotiocianato , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Codorniz , Reprodutibilidade dos Testes , Análise de Sequência de ProteínaRESUMO
Athletes are advised to receive the COVID-19 vaccination to protect themselves from SARS-CoV-2 infection during major competitions. Despite this, many athletes are reluctant to get the COVID-19 vaccine due to concerns that symptoms of vaccinosis may impair athletic performance. This study aimed to determine the effects of COVID-19 vaccination on the physiological responses to graded exercise. Healthy physically active participants completed a 20-min bout of graded cycling exercise at intensities corresponding to 50%, 60%, 70%, and 80% of the predetermined VÌO2max before and â¼21 days after receiving the COVID-19 vaccine (2-dose Pfizer mRNA or 1-dose Johnson & Johnson). Vaccination had no effect on a large number of physiological responses to exercise measured in blood (e.g., lactate, epinephrine, and cortisol) and by respiratory gas exchange (e.g., oxygen uptake, CO2 production, ventilation, respiratory exchange ratio, predicted VÌO2max, and ventilatory threshold) (P > 0.05). We did, however, find significant elevations in heart rate (â¼5 beats/min) and norepinephrine (P = 0.006 and 0.04, respectively) in response to vigorous (i.e., 70%-80% VÌO2max) intensity exercise after vaccination, particularly in those who received the two-shot Pfizer mRNA vaccine regimen. These findings held true when compared with demographically matched controls who completed identical bouts of exercise several weeks apart without receiving a vaccine; delta values for heart rate (P = 0.03) and norepinephrine (P = 0.01) were elevated in the second trial for those who received the Pfizer mRNA vaccine compared with the controls at the 70% and 80% VÌO2max stages, respectively. Recent COVID-19 vaccination has minimal effects on the physiological responses to graded exercise in physically active healthy people. The small elevations in cardiovascular and neuroendocrine responses to exercise after the Pfizer mRNA vaccine regimen could have implications for athletes at the elite level and warrants investigation.NEW & NOTEWORTHY Recent COVID-19 vaccination does not affect a large number of physiological responses to graded exercise, indicating that vaccination is unlikely to impair exercise capacity in normal healthy people. Heart rate and norepinephrine levels were elevated in response to exercise after the two-dose Pfizer mRNA vaccination compared to controls. Small elevations in cardiovascular and neuroendocrine responses to exercise after recent COVID-19 vaccination could have implications for exercise performance in elite athletes and warrants investigation.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNARESUMO
BACKGROUND: High-throughput mass spectrometry (MS) proteomics data is increasingly being used to complement traditional structural genome annotation methods. To keep pace with the high speed of experimental data generation and to aid in structural genome annotation, experimentally observed peptides need to be mapped back to their source genome location quickly and exactly. Previously, the tools to do this have been limited to custom scripts designed by individual research groups to analyze their own data, are generally not widely available, and do not scale well with large eukaryotic genomes. RESULTS: The Proteogenomic Mapping Tool includes a Java implementation of the Aho-Corasick string searching algorithm which takes as input standardized file types and rapidly searches experimentally observed peptides against a given genome translated in all 6 reading frames for exact matches. The Java implementation allows the application to scale well with larger eukaryotic genomes while providing cross-platform functionality. CONCLUSIONS: The Proteogenomic Mapping Tool provides a standalone application for mapping peptides back to their source genome on a number of operating system platforms with standard desktop computer hardware and executes very rapidly for a variety of datasets. Allowing the selection of different genetic codes for different organisms allows researchers to easily customize the tool to their own research interests and is recommended for anyone working to structurally annotate genomes using MS derived proteomics data.
Assuntos
Anotação de Sequência Molecular/métodos , Peptídeos/genética , Algoritmos , Códon , Genômica/métodos , Espectrometria de Massas/métodos , Biossíntese de Proteínas , Proteômica/métodos , SoftwareRESUMO
Evidence is emerging that exercise and physical activity provides protection against severe COVID-19 disease in patients infected with SARS-CoV-2, but it is not known how exercise affects immune responses to the virus. A healthy man completed a graded cycling ergometer test prior to and after SARS-CoV-2 infection, then again after receiving an adenovirus vector-based COVID-19 vaccine. Using whole blood SARS-CoV-2 peptide stimulation assays, IFN-γ ELISPOT assays, flow cytometry, ex vivo viral-specific T-cell expansion assays and deep T-cell receptor (TCR) ß sequencing, we found that exercise robustly mobilized highly functional SARS-CoV-2 specific T-cells to the blood compartment that recognized spike protein, membrane protein, nucleocapsid antigen and the B.1.1.7 α-variant, and consisted mostly of CD3+/CD8+ T-cells and double-negative (CD4-/CD8-) CD3+ T-cells. The magnitude of SARS-CoV-2 T-cell mobilization with exercise was intensity dependent and robust when compared to T-cells recognizing other viruses (e.g. CMV, EBV, influenza). Vaccination enhanced the number of exercise-mobilized SARS-CoV-2 T-cells recognizing spike protein and the α-variant only. Exercise-mobilized SARS-CoV-2 specific T-cells proliferated more vigorously to ex vivo peptide stimulation and maintained broad TCR-ß diversity against SARS-CoV-2 antigens both before and after ex vivo expansion. Neutralizing antibodies to SARS-CoV-2 were transiently elevated during exercise after both infection and vaccination. Finally, infection was associated with an increased metabolic demand to defined exercise workloads, which was restored to pre-infection levels after vaccination. This case study provides impetus for larger studies to determine if these immune responses to exercise can facilitate viral clearance, ameliorate symptoms of long COVID syndrome, and/or restore functional exercise capacity following SARS-CoV-2 infection.
RESUMO
Clostridium carboxidivorans strain P7(T) is a strictly anaerobic acetogenic bacterium that produces acetate, ethanol, butanol, and butyrate. The C. carboxidivorans genome contains all the genes for the carbonyl branch of the Wood-Ljungdahl pathway for CO(2) fixation, and it encodes enzymes for conversion of acetyl coenzyme A into butanol and butyrate.
Assuntos
Clostridium/genética , Genoma Bacteriano , Clostridium/classificação , DNA Bacteriano/genética , Dados de Sequência MolecularRESUMO
BACKGROUND: Functional genomics technologies that measure genome expression at a global scale are accelerating biological knowledge discovery. Generating these high throughput datasets is relatively easy compared to the downstream functional modelling necessary for elucidating the molecular mechanisms that govern the biology under investigation. A number of publicly available 'discovery-based' computational tools use the computationally amenable Gene Ontology (GO) for hypothesis generation. However, there are few tools that support hypothesis-based testing using the GO and none that support testing with user defined hypothesis terms.Here, we present GOModeler, a tool that enables researchers to conduct hypothesis-based testing of high throughput datasets using the GO. GOModeler summarizes the overall effect of a user defined gene/protein differential expression dataset on specific GO hypothesis terms selected by the user to describe a biological experiment. The design of the tool allows the user to complement the functional information in the GO with his/her domain specific expertise for comprehensive hypothesis testing. RESULTS: GOModeler tests the relevance of the hypothesis terms chosen by the user for the input gene dataset by providing the individual effects of the genes on the hypothesis terms and the overall effect of the entire dataset on each of the hypothesis terms. It matches the GO identifiers (ids) of the genes with the GO ids of the hypothesis terms and parses the names of those ids that match to assign effects. We demonstrate the capabilities of GOModeler with a dataset of nine differentially expressed cytokine genes and compare the results to those obtained through manual analysis of the dataset by an immunologist. The direction of overall effects on all hypothesis terms except one was consistent with the results obtained by manual analysis. The tool's editing capability enables the user to augment the information extracted. GOModeler is available as a part of the AgBase tool suite (http://www.agbase.msstate.edu). CONCLUSIONS: GOModeler allows hypothesis driven analysis of high throughput datasets using the GO. Using this tool, researchers can quickly evaluate the overall effect of quantitative expression changes of gene set on specific biological processes of interest. The results are provided in both tabular and graphical formats.
Assuntos
Genoma , Genômica/métodos , Software , Bases de Dados Genéticas , Interface Usuário-ComputadorRESUMO
BACKGROUND: Oligotropha carboxidovorans OM5 T. (DSM 1227, ATCC 49405) is a chemolithoautotrophic bacterium capable of utilizing CO (carbon monoxide) and fixing CO2 (carbon dioxide). We previously published the draft genome of this organism and recently submitted the complete genome sequence to GenBank. RESULTS: The genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5 consists of a 3.74-Mb chromosome and a 133-kb megaplasmid that contains the genes responsible for utilization of carbon monoxide, carbon dioxide, and hydrogen. To our knowledge, this strain is the first one to be sequenced in the genus Oligotropha, the closest fully sequenced relatives being Bradyrhizobium sp. BTAi and USDA110 and Nitrobacter hamburgiensis X14. Analysis of the O. carboxidovorans genome reveals potential links between plasmid-encoded chemolithoautotrophy and chromosomally-encoded lipid metabolism. Comparative analysis of O. carboxidovorans with closely related species revealed differences in metabolic pathways, particularly in carbohydrate and lipid metabolism, as well as transport pathways. CONCLUSION: Oligotropha, Bradyrhizobium sp and Nitrobacter hamburgiensis X14 are phylogenetically proximal. Although there is significant conservation of genome organization between the species, there are major differences in many metabolic pathways that reflect the adaptive strategies unique to each species.
Assuntos
Bradyrhizobiaceae/genética , Crescimento Quimioautotrófico/genética , Genoma Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobiaceae/enzimologia , Metabolismo dos Carboidratos/genética , DNA Circular/genética , Metabolismo Energético/genética , Herança Extracromossômica/genética , Ácidos Graxos/biossíntese , Genômica , Sequências Repetitivas Dispersas/genética , Redes e Vias Metabólicas/genética , Oxirredução , Filogenia , Ligação Proteica , Transporte Proteico , RNA Ribossômico 16S/genética , RNA não Traduzido/genética , Homologia de Sequência de Aminoácidos , Sintenia/genéticaRESUMO
BACKGROUND: The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. RESULTS: Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. CONCLUSIONS: In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence.
Assuntos
Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Bacteriano/genética , RNA não Traduzido/genética , Streptococcus pneumoniae/genética , Sequência de Bases , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Óperon/genética , Sequências Repetitivas de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Transcrição GênicaAssuntos
Galinhas/genética , Cromossomos/genética , Animais , Galinhas/classificação , Galinhas/fisiologia , Mapeamento Cromossômico , Metilação de DNA , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Variação Genética , Genômica/métodos , Hibridização in Situ Fluorescente/métodos , Masculino , Anotação de Sequência Molecular , FilogeniaRESUMO
Functional analysis using the Gene Ontology (GO) is crucial for array analysis, but it is often difficult for researchers to assess the amount and quality of GO annotations associated with different sets of gene products. In many cases the source of the GO annotations and the date the GO annotations were last updated is not apparent, further complicating a researchers' ability to assess the quality of the GO data provided. Moreover, GO biocurators need to ensure that the GO quality is maintained and optimal for the functional processes that are most relevant for their research community. We report the GO Annotation Quality (GAQ) score, a quantitative measure of GO quality that includes breadth of GO annotation, the level of detail of annotation and the type of evidence used to make the annotation. As a case study, we apply the GAQ scoring method to a set of diverse eukaryotes and demonstrate how the GAQ score can be used to track changes in GO annotations over time and to assess the quality of GO annotations available for specific biological processes. The GAQ score also allows researchers to quantitatively assess the functional data available for their experimental systems (arrays or databases).